These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Numerical Simulation of Coalescence-Induced Jumping of Multidroplets on Superhydrophobic Surfaces: Initial Droplet Arrangement Effect. Wang K; Liang Q; Jiang R; Zheng Y; Lan Z; Ma X Langmuir; 2017 Jun; 33(25):6258-6268. PubMed ID: 28562053 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures. Zhang P; Maeda Y; Lv F; Takata Y; Orejon D ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681 [TBL] [Abstract][Full Text] [Related]
6. Focal Plane Shift Imaging for the Analysis of Dynamic Wetting Processes. Cha H; Chun JM; Sotelo J; Miljkovic N ACS Nano; 2016 Sep; 10(9):8223-32. PubMed ID: 27447844 [TBL] [Abstract][Full Text] [Related]
7. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation. Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806 [TBL] [Abstract][Full Text] [Related]
8. Competing Effects between Condensation and Self-Removal of Water Droplets Determine Antifrosting Performance of Superhydrophobic Surfaces. Zhao G; Zou G; Wang W; Geng R; Yan X; He Z; Liu L; Zhou X; Lv J; Wang J ACS Appl Mater Interfaces; 2020 Feb; 12(6):7805-7814. PubMed ID: 31972085 [TBL] [Abstract][Full Text] [Related]
10. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces. Aili A; Li H; Alhosani MH; Zhang T ACS Appl Mater Interfaces; 2016 Aug; 8(33):21776-86. PubMed ID: 27486890 [TBL] [Abstract][Full Text] [Related]
11. Designing a Superhydrophobic Surface for Enhanced Atmospheric Corrosion Resistance Based on Coalescence-Induced Droplet Jumping Behavior. Chen X; Wang P; Zhang D ACS Appl Mater Interfaces; 2019 Oct; 11(41):38276-38284. PubMed ID: 31529958 [TBL] [Abstract][Full Text] [Related]
12. Insights into the Impact of Surface Hydrophobicity on Droplet Coalescence and Jumping Dynamics. Li H; Yang W; Aili A; Zhang T Langmuir; 2017 Aug; 33(34):8574-8581. PubMed ID: 28767250 [TBL] [Abstract][Full Text] [Related]
13. Breaking Droplet Jumping Energy Conversion Limits with Superhydrophobic Microgrooves. Peng Q; Yan X; Li J; Li L; Cha H; Ding Y; Dang C; Jia L; Miljkovic N Langmuir; 2020 Aug; 36(32):9510-9522. PubMed ID: 32689802 [TBL] [Abstract][Full Text] [Related]
14. Self-Enhancement of Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with an Asymmetric V-Groove. Lu D; Zhao M; Zhang H; Yang Y; Zheng Y Langmuir; 2020 May; 36(19):5444-5453. PubMed ID: 32311257 [TBL] [Abstract][Full Text] [Related]
15. Hierarchical Condensation. Yan X; Chen F; Sett S; Chavan S; Li H; Feng L; Li L; Zhao F; Zhao C; Huang Z; Miljkovic N ACS Nano; 2019 Jul; 13(7):8169-8184. PubMed ID: 31265236 [TBL] [Abstract][Full Text] [Related]
16. Enhancement and Guidance of Coalescence-Induced Jumping of Droplets on Superhydrophobic Surfaces with a U-Groove. Liu C; Zhao M; Zheng Y; Lu D; Song L ACS Appl Mater Interfaces; 2021 Jul; 13(27):32542-32554. PubMed ID: 34180653 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of Coalescence-Induced Nanodroplet Jumping on Superhydrophobic Surfaces. Xie FF; Lu G; Wang XD; Wang DQ Langmuir; 2018 Sep; 34(37):11195-11203. PubMed ID: 30133297 [TBL] [Abstract][Full Text] [Related]