BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25651841)

  • 1. Determination of the human spine curve based on laser triangulation.
    Poredoš P; Čelan D; Možina J; Jezeršek M
    BMC Med Imaging; 2015 Feb; 15(1):2. PubMed ID: 25651841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the reproducibility and reliability of sagittal vertebral inclination measurements from MR images of the spine.
    Vrtovec T; Pernuš F; Likar B
    Comput Med Imaging Graph; 2014 Oct; 38(7):620-7. PubMed ID: 24881499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproducibility of a semi-automatic method for 6-point vertebral morphometry in a multi-centre trial.
    Guglielmi G; Stoppino LP; Placentino MG; D'Errico F; Palmieri F
    Eur J Radiol; 2009 Jan; 69(1):173-8. PubMed ID: 18078732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of spinal curvature in 3D: application to CT images of normal spine.
    Vrtovec T; Likar B; Pernus F
    Phys Med Biol; 2008 Apr; 53(7):1895-908. PubMed ID: 18364545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy and reliability of coronal and sagittal spinal curvature data based on patient-specific three-dimensional models created by the EOS 2D/3D imaging system.
    Somoskeöy S; Tunyogi-Csapó M; Bogyó C; Illés T
    Spine J; 2012 Nov; 12(11):1052-9. PubMed ID: 23102842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative evaluation of an automatic segmentation method for 3D reconstruction of intervertebral scoliotic disks from MR images.
    Claudia C; Farida C; Guy G; Marie-Claude M; Carl-Eric A
    BMC Med Imaging; 2012 Aug; 12():26. PubMed ID: 22856667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI of the lumbar spine: comparison of 3D isotropic turbo spin-echo SPACE sequence versus conventional 2D sequences at 3.0 T.
    Lee S; Jee WH; Jung JY; Lee SY; Ryu KS; Ha KY
    Acta Radiol; 2015 Feb; 56(2):174-81. PubMed ID: 24553584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Endplate-Based Joint Coordinate System for Measuring Kinematics in Normal and Abnormally-Shaped Lumbar Vertebrae.
    Berry DB; Rodríguez-Soto AE; Tokunaga JR; Gombatto SP; Ward SR
    J Appl Biomech; 2015 Dec; 31(6):499-503. PubMed ID: 26157107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of spinal sagittal curvatures using the laser triangulation method.
    Celan D; Palfy M; Bracun D; Turk Z; Mozina J; Komadina R
    Coll Antropol; 2012 Mar; 36(1):179-86. PubMed ID: 22816218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetic topographical technique of curve evaluation for adolescent idiopathic scoliosis.
    Knott P; Mardjetko S; Nance D; Dunn M
    Spine (Phila Pa 1976); 2006 Nov; 31(24):E911-5; discussion E916. PubMed ID: 17108820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Lenke classification of adolescent idiopathic scoliosis: how it organizes curve patterns as a template to perform selective fusions of the spine.
    Lenke LG; Edwards CC; Bridwell KH
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S199-207. PubMed ID: 14560193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supervised methods for detection and segmentation of tissues in clinical lumbar MRI.
    Ghosh S; Chaudhary V
    Comput Med Imaging Graph; 2014 Oct; 38(7):639-49. PubMed ID: 24746606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The prediction of lumbar spine geometry: method development and validation.
    Campbell-Kyureghyan N; Jorgensen M; Burr D; Marras W
    Clin Biomech (Bristol, Avon); 2005 Jun; 20(5):455-64. PubMed ID: 15836932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic spinal canal detection in lumbar MR images in the sagittal view using dynamic programming.
    Koh J; Chaudhary V; Jeon EK; Dhillon G
    Comput Med Imaging Graph; 2014 Oct; 38(7):569-79. PubMed ID: 24996841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Validation of the DTP-3 system for noninvasive spinal shape measurement by comparison with X-ray examination].
    Krejčí J; Gallo J; Salinger J; Štěpaník P
    Acta Chir Orthop Traumatol Cech; 2012; 79(3):255-62. PubMed ID: 22840958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A support vector machines classifier to assess the severity of idiopathic scoliosis from surface topography.
    Ramirez L; Durdle NG; Raso VJ; Hill DL
    IEEE Trans Inf Technol Biomed; 2006 Jan; 10(1):84-91. PubMed ID: 16445253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic recognition of surface landmarks of anatomical structures of back and posture.
    Michoński J; Glinkowski W; Witkowski M; Sitnik R
    J Biomed Opt; 2012 May; 17(5):056015. PubMed ID: 22612138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvements in shape-from-focus for holographic reconstructions with regard to focus operators, neighborhood-size, and height value interpolation.
    Thelen A; Frey S; Hirsch S; Hering P
    IEEE Trans Image Process; 2009 Jan; 18(1):151-7. PubMed ID: 19095526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free-form object reconstruction from silhouettes, occluding edges and texture edges: a unified and robust operator based on duality.
    Liu S; Kang K; Tarel JP; Cooper DB
    IEEE Trans Pattern Anal Mach Intell; 2008 Jan; 30(1):131-46. PubMed ID: 18000330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scoliosis follow-up using noninvasive trunk surface acquisition.
    Adankon MM; Chihab N; Dansereau J; Labelle H; Cheriet F
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2262-70. PubMed ID: 23508244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.