BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25652010)

  • 1. Active mechanical coupling between the nucleus, cytoskeleton and the extracellular matrix, and the implications for perinuclear actomyosin organization.
    Zemel A
    Soft Matter; 2015 Mar; 11(12):2353-63. PubMed ID: 25652010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early-time dynamics of actomyosin polarization in cells of confined shape in elastic matrices.
    Nisenholz N; Botton M; Zemel A
    Soft Matter; 2014 Apr; 10(14):2453-62. PubMed ID: 24623163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics.
    Kumar S; Maxwell IZ; Heisterkamp A; Polte TR; Lele TP; Salanga M; Mazur E; Ingber DE
    Biophys J; 2006 May; 90(10):3762-73. PubMed ID: 16500961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between cell stiffness and stress fiber amount, assessed by simultaneous atomic force microscopy and live-cell fluorescence imaging.
    Gavara N; Chadwick RS
    Biomech Model Mechanobiol; 2016 Jun; 15(3):511-23. PubMed ID: 26206449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical Analysis of Stress Distribution and Cell Polarization Surrounding a Model Wound.
    Maroudas-Sacks Y; Zemel A
    Biophys J; 2018 Jul; 115(2):398-410. PubMed ID: 30021114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The regulation of dynamic mechanical coupling between actin cytoskeleton and nucleus by matrix geometry.
    Li Q; Kumar A; Makhija E; Shivashankar GV
    Biomaterials; 2014 Jan; 35(3):961-9. PubMed ID: 24183171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization.
    Keeling MC; Flores LR; Dodhy AH; Murray ER; Gavara N
    Sci Rep; 2017 Jul; 7(1):5219. PubMed ID: 28701767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RhoA-induced cytoskeletal tension controls adaptive cellular remodeling to mechanical signaling.
    Lim SM; Trzeciakowski JP; Sreenivasappa H; Dangott LJ; Trache A
    Integr Biol (Camb); 2012 Jun; 4(6):615-27. PubMed ID: 22546924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of contractile forces generated in disorganized actomyosin bundles.
    Kim T
    Biomech Model Mechanobiol; 2015 Apr; 14(2):345-55. PubMed ID: 25103419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell response to substrate rigidity is regulated by active and passive cytoskeletal stress.
    Doss BL; Pan M; Gupta M; Grenci G; Mège RM; Lim CT; Sheetz MP; Voituriez R; Ladoux B
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12817-12825. PubMed ID: 32444491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing cytoskeletal pre-stress and nuclear mechanics in endothelial cells with spatiotemporally controlled (de-)adhesion kinetics on micropatterned substrates.
    Versaevel M; Riaz M; Corne T; Grevesse T; Lantoine J; Mohammed D; Bruyère C; Alaimo L; De Vos WH; Gabriele S
    Cell Adh Migr; 2017 Jan; 11(1):98-109. PubMed ID: 27111836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmission of mechanical stresses within the cytoskeleton of adherent cells: a theoretical analysis based on a multi-component cell model.
    Tracqui P; Ohayon J
    Acta Biotheor; 2004; 52(4):323-41. PubMed ID: 15520537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actomyosin contractility spatiotemporally regulates actin network dynamics in migrating cells.
    Okeyo KO; Adachi T; Sunaga J; Hojo M
    J Biomech; 2009 Nov; 42(15):2540-8. PubMed ID: 19665125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unveiling the physics underlying symmetry breaking of the actin cytoskeleton: An artificial cell-based approach.
    Sakamoto R; Maeda YT
    Biophys Physicobiol; 2023; 20(3):e200032. PubMed ID: 38124798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints.
    Alisafaei F; Jokhun DS; Shivashankar GV; Shenoy VB
    Proc Natl Acad Sci U S A; 2019 Jul; 116(27):13200-13209. PubMed ID: 31209017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanosensing of matrix by stem cells: From matrix heterogeneity, contractility, and the nucleus in pore-migration to cardiogenesis and muscle stem cells in vivo.
    Smith L; Cho S; Discher DE
    Semin Cell Dev Biol; 2017 Nov; 71():84-98. PubMed ID: 28587976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute downregulation of emerin alters actomyosin cytoskeleton connectivity and function.
    Jin Q; Pandey D; Thompson CB; Lewis S; Sung HW; Nguyen TD; Kuo S; Wilson KL; Gracias DH; Romer LH
    Biophys J; 2023 Sep; 122(18):3690-3703. PubMed ID: 37254483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate nesting guides cyst morphogenesis of human pluripotent stem cells without 3D extracellular matrix overlay.
    Chen YP; Shao Y; Chen PC; Li K; Li JY; Meng J; Lv CL; Liu HY; Lv C; Feng XQ; Li B
    Acta Biomater; 2023 Oct; 170():519-531. PubMed ID: 37659729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myosin II and mechanotransduction: a balancing act.
    Clark K; Langeslag M; Figdor CG; van Leeuwen FN
    Trends Cell Biol; 2007 Apr; 17(4):178-86. PubMed ID: 17320396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell shape, spreading symmetry and the polarization of stress-fibers in cells.
    Zemel A; Rehfeldt F; Brown AE; Discher DE; Safran SA
    J Phys Condens Matter; 2010 May; 22(19):194110. PubMed ID: 20458358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.