These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25652122)

  • 1. Sphere to ring morphological transformation in drying nanofluid droplets in a contact-free environment.
    Miglani A; Basu S
    Soft Matter; 2015 Mar; 11(11):2268-78. PubMed ID: 25652122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of Buckling Dynamics in Nanoparticle Laden Droplets Using External Heating.
    Pathak B; Basu S
    Langmuir; 2016 Mar; 32(11):2591-600. PubMed ID: 26938984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal buckling kinetics in drying nanoparticle-laden droplets on a hydrophobic substrate.
    Bansal L; Miglani A; Basu S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042304. PubMed ID: 26565237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Buckling-driven morphological transformation of droplets of a mixed colloidal suspension during evaporation-induced self-assembly by spray drying.
    Sen D; Melo JS; Bahadur J; Mazumder S; Bhattacharya S; Ghosh G; Dutta D; D'Souza SF
    Eur Phys J E Soft Matter; 2010 Apr; 31(4):393-402. PubMed ID: 20480963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological transitions and buckling characteristics in a nanoparticle-laden sessile droplet resting on a heated hydrophobic substrate.
    Bansal L; Miglani A; Basu S
    Phys Rev E; 2016 Apr; 93():042605. PubMed ID: 27176350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Onset of buckling in drying droplets of colloidal suspensions.
    Tsapis N; Dufresne ER; Sinha SS; Riera CS; Hutchinson JW; Mahadevan L; Weitz DA
    Phys Rev Lett; 2005 Jan; 94(1):018302. PubMed ID: 15698142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of buckling in colloidal droplets during evaporation-induced assembly of nanoparticles.
    Bahadur J; Sen D; Mazumder S; Paul B; Bhatt H; Singh SG
    Langmuir; 2012 Jan; 28(3):1914-23. PubMed ID: 22185181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation pathways and breakup modes in acoustically levitated bicomponent droplets under external heating.
    Pathak B; Basu S
    Phys Rev E; 2016 Mar; 93(3):033103. PubMed ID: 27078443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaporation driven self-assembly of a colloidal dispersion during spray drying: volume fraction dependent morphological transition.
    Sen D; Mazumder S; Melo JS; Khan A; Bhattyacharya S; D'Souza SF
    Langmuir; 2009 Jun; 25(12):6690-5. PubMed ID: 19323504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloid probe AFM investigation of the influence of cross-linking on the interaction behavior and nano-rheology of colloidal droplets.
    Gillies G; Prestidge CA
    Langmuir; 2005 Dec; 21(26):12342-7. PubMed ID: 16343012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaporation Caused Invaginations of Acoustically Levitated Colloidal Droplets.
    Chen H; Zhang Y; Wang H; Dong X; Zang D
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Buckling and crumpling of drying droplets of colloid-polymer suspensions.
    Sugiyama Y; Larsen RJ; Kim JW; Weitz DA
    Langmuir; 2006 Jul; 22(14):6024-30. PubMed ID: 16800655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the Particle Concentration and Marangoni Flow on the Formation of Cellulose Nanocrystal Films.
    Gençer A; Schütz C; Thielemans W
    Langmuir; 2017 Jan; 33(1):228-234. PubMed ID: 28034313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature Mediated Morphological Transition during Drying of Spray Colloidal Droplets.
    Biswas P; Sen D; Mazumder S; Basak CB; Doshi P
    Langmuir; 2016 Mar; 32(10):2464-73. PubMed ID: 26900937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaporation-induced self assembly of nanoparticles in non-buckling regime: volume fraction dependent packing.
    Bahadur J; Sen D; Mazumder S; Paul B; Khan A; Ghosh G
    J Colloid Interface Sci; 2010 Nov; 351(2):357-64. PubMed ID: 20800848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of hydrodynamic retardation and interparticle interactions on the self-assembly in a drying droplet containing suspended solid particles.
    Lebovka NI; Khrapatiy S; Melnyk R; Vygornitskii M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052307. PubMed ID: 25353800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of surface orientation on the organization of nanoparticles in drying nanofluid droplets.
    Hampton MA; Nguyen TA; Nguyen AV; Xu ZP; Huang L; Rudolph V
    J Colloid Interface Sci; 2012 Jul; 377(1):456-62. PubMed ID: 22503627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling self-assembly and buckling in nano fluid droplets through vapour mediated interaction of adjacent droplets.
    Hegde O; Kabi P; Agarwal S; Basu S
    J Colloid Interface Sci; 2019 Apr; 541():348-355. PubMed ID: 30708250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape, shell, and vacuole formation during the drying of a single concentrated whey protein droplet.
    Sadek C; Tabuteau H; Schuck P; Fallourd Y; Pradeau N; Le Floch-Fouéré C; Jeantet R
    Langmuir; 2013 Dec; 29(50):15606-13. PubMed ID: 24261716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.