These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 25652122)
21. Self-assembly of colloidal nanoparticles inside charged droplets during spray-drying in the fabrication of nanostructured particles. Suhendi A; Nandiyanto AB; Munir MM; Ogi T; Gradon L; Okuyama K Langmuir; 2013 Oct; 29(43):13152-61. PubMed ID: 24138547 [TBL] [Abstract][Full Text] [Related]
22. Structural transitions in a ring stain created at the contact line of evaporating nanosuspension sessile drops. Askounis A; Sefiane K; Koutsos V; Shanahan ME Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012301. PubMed ID: 23410325 [TBL] [Abstract][Full Text] [Related]
23. Temperature and Concentration Dependence of Human Whole Blood and Protein Drying Droplets. Pal A; Gope A; Iannacchione G Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33562850 [TBL] [Abstract][Full Text] [Related]
24. Effect of nanoparticle sizes and number densities on the evaporation and dryout characteristics for strongly pinned nanofluid droplets. Chon CH; Paik S; Tipton JB; Kihm KD Langmuir; 2007 Mar; 23(6):2953-60. PubMed ID: 17338500 [TBL] [Abstract][Full Text] [Related]
25. Fluid flow and particle dynamics inside an evaporating droplet containing live bacteria displaying chemotaxis. Thokchom AK; Swaminathan R; Singh A Langmuir; 2014 Oct; 30(41):12144-53. PubMed ID: 25229613 [TBL] [Abstract][Full Text] [Related]
26. Assembly of nanoparticles at the contact line of a drying droplet under the influence of a dipped tip. Keseroğlu K; Culha M J Colloid Interface Sci; 2011 Aug; 360(1):8-14. PubMed ID: 21546030 [TBL] [Abstract][Full Text] [Related]
27. How surface functional groups influence fracturation in nanofluid droplet dry-outs. Carle F; Brutin D Langmuir; 2013 Aug; 29(32):9962-6. PubMed ID: 23902151 [TBL] [Abstract][Full Text] [Related]
28. Buckling and Drying Kinetics of Particle-Stabilized Water Droplets Fully or Partially Immersed in an Oil Layer. Abe K; Inasawa S Langmuir; 2021 Jan; 37(1):219-229. PubMed ID: 33373243 [TBL] [Abstract][Full Text] [Related]
29. Interaction forces, deformation and nano-rheology of emulsion droplets as determined by colloid probe AFM. Gillies G; Prestidge CA Adv Colloid Interface Sci; 2004 May; 108-109():197-205. PubMed ID: 15072942 [TBL] [Abstract][Full Text] [Related]
30. Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates. Sefiane K; Bennacer R Adv Colloid Interface Sci; 2009; 147-148():263-71. PubMed ID: 19019321 [TBL] [Abstract][Full Text] [Related]
31. Dynamic spreading of nanofluids on solids. Part I: experimental. Kondiparty K; Nikolov AD; Wasan D; Liu KL Langmuir; 2012 Oct; 28(41):14618-23. PubMed ID: 22966990 [TBL] [Abstract][Full Text] [Related]
32. Buckling instability of droplet chains in freely suspended smectic films. Völtz C; Stannarius R Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011705. PubMed ID: 16089985 [TBL] [Abstract][Full Text] [Related]
33. Evaporation of nanodroplets on heated substrates: a molecular dynamics simulation study. Zhang J; Leroy F; Müller-Plathe F Langmuir; 2013 Aug; 29(31):9770-82. PubMed ID: 23848165 [TBL] [Abstract][Full Text] [Related]
34. Controlling the buckling instability of drying droplets of suspensions through colloidal interactions. Lintingre É; Ducouret G; Lequeux F; Olanier L; Périé T; Talini L Soft Matter; 2015 May; 11(18):3660-5. PubMed ID: 25811664 [TBL] [Abstract][Full Text] [Related]
35. Universality in the buckling behavior of drying suspension drops. Bamboriya OP; Tirumkudulu MS Soft Matter; 2023 Apr; 19(14):2605-2611. PubMed ID: 36947449 [TBL] [Abstract][Full Text] [Related]
36. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows. Mulligan MK; Rothstein JP Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665 [TBL] [Abstract][Full Text] [Related]
37. Classifying dynamic contact line modes in drying drops. Baldwin KA; Fairhurst DJ Soft Matter; 2015 Feb; 11(8):1628-33. PubMed ID: 25599376 [TBL] [Abstract][Full Text] [Related]
38. Effect of substrate temperature on pattern formation of nanoparticles from volatile drops. Parsa M; Harmand S; Sefiane K; Bigerelle M; Deltombe R Langmuir; 2015 Mar; 31(11):3354-67. PubMed ID: 25742508 [TBL] [Abstract][Full Text] [Related]
39. Microflow and crack formation patterns in drying sessile droplets of liposomes suspended in trehalose solutions. Adams DR; Toner M; Langer R Langmuir; 2008 Aug; 24(15):7688-97. PubMed ID: 18613701 [TBL] [Abstract][Full Text] [Related]
40. Towards universal buckling dynamics in nanocolloidal sessile droplets: the effect of hydrophilic to superhydrophobic substrates and evaporation modes. Basu S; Bansal L; Miglani A Soft Matter; 2016 Jun; 12(22):4896-902. PubMed ID: 27125247 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]