These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 25652188)
1. Tobramycin and nebramine as pseudo-oligosaccharide scaffolds for the development of antimicrobial cationic amphiphiles. Berkov-Zrihen Y; Herzog IM; Benhamou RI; Feldman M; Steinbuch KB; Shaul P; Lerer S; Eldar A; Fridman M Chemistry; 2015 Mar; 21(11):4340-9. PubMed ID: 25652188 [TBL] [Abstract][Full Text] [Related]
2. Site-selective displacement of tobramycin hydroxyls for preparation of antimicrobial cationic amphiphiles. Berkov-Zrihen Y; Herzog IM; Feldman M; Fridman M Org Lett; 2013 Dec; 15(24):6144-7. PubMed ID: 24224657 [TBL] [Abstract][Full Text] [Related]
3. Increased Degree of Unsaturation in the Lipid of Antifungal Cationic Amphiphiles Facilitates Selective Fungal Cell Disruption. Steinbuch KB; Benhamou RI; Levin L; Stein R; Fridman M ACS Infect Dis; 2018 May; 4(5):825-836. PubMed ID: 29419285 [TBL] [Abstract][Full Text] [Related]
4. Ceragenins (cationic steroid compounds), a novel class of antimicrobial agents. Epand RM; Epand RF; Savage PB Drug News Perspect; 2008; 21(6):307-11. PubMed ID: 18836587 [TBL] [Abstract][Full Text] [Related]
5. Serum Prevents Interactions between Antimicrobial Amphiphilic Aminoglycosides and Plasma Membranes. Logviniuk D; Fridman M ACS Infect Dis; 2020 Dec; 6(12):3212-3223. PubMed ID: 33174428 [TBL] [Abstract][Full Text] [Related]
6. Antibacterial activities of aminoglycoside antibiotics-derived cationic amphiphiles. Polyol-modified neomycin B-, kanamycin A-, amikacin-, and neamine-based amphiphiles with potent broad spectrum antibacterial activity. Bera S; Zhanel GG; Schweizer F J Med Chem; 2010 May; 53(9):3626-31. PubMed ID: 20373816 [TBL] [Abstract][Full Text] [Related]
7. Cationic amphiphiles increase activity of aminoglycoside antibiotic tobramycin in the presence of airway polyelectrolytes. Purdy Drew KR; Sanders LK; Culumber ZW; Zribi O; Wong GC J Am Chem Soc; 2009 Jan; 131(2):486-93. PubMed ID: 19072156 [TBL] [Abstract][Full Text] [Related]
8. Amphiphilic cationic β(3R3)-peptides: membrane active peptidomimetics and their potential as antimicrobial agents. Mosca S; Keller J; Azzouz N; Wagner S; Titz A; Seeberger PH; Brezesinski G; Hartmann L Biomacromolecules; 2014 May; 15(5):1687-95. PubMed ID: 24694059 [TBL] [Abstract][Full Text] [Related]
9. Antibacterial activity of amphiphilic tobramycin. Dhondikubeer R; Bera S; Zhanel GG; Schweizer F J Antibiot (Tokyo); 2012 Oct; 65(10):495-8. PubMed ID: 22781280 [TBL] [Abstract][Full Text] [Related]
10. Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Findlay B; Zhanel GG; Schweizer F Antimicrob Agents Chemother; 2010 Oct; 54(10):4049-58. PubMed ID: 20696877 [TBL] [Abstract][Full Text] [Related]
11. Effect of stereochemistry, chain length and sequence pattern on antimicrobial properties of short synthetic β-sheet forming peptide amphiphiles. Ong ZY; Cheng J; Huang Y; Xu K; Ji Z; Fan W; Yang YY Biomaterials; 2014 Jan; 35(4):1315-25. PubMed ID: 24211081 [TBL] [Abstract][Full Text] [Related]
12. Antimicrobial activity, biocompatibility and hydrogelation ability of dipeptide-based amphiphiles. Mitra RN; Shome A; Paul P; Das PK Org Biomol Chem; 2009 Jan; 7(1):94-102. PubMed ID: 19081951 [TBL] [Abstract][Full Text] [Related]
13. Tuning the Effects of Bacterial Membrane Permeability through Photo-Isomerization of Antimicrobial Cationic Amphiphiles. Salta J; Benhamou RI; Herzog IM; Fridman M Chemistry; 2017 Sep; 23(52):12724-12728. PubMed ID: 28727190 [TBL] [Abstract][Full Text] [Related]
14. Antimicrobial polymers as synthetic mimics of host-defense peptides. Kuroda K; Caputo GA Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(1):49-66. PubMed ID: 23076870 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and antibacterial properties of novel hydrolyzable cationic amphiphiles. Incorporation of multiple head groups leads to impressive antibacterial activity. Haldar J; Kondaiah P; Bhattacharya S J Med Chem; 2005 Jun; 48(11):3823-31. PubMed ID: 15916434 [TBL] [Abstract][Full Text] [Related]
17. Di-alkylated paromomycin derivatives: targeting the membranes of gram positive pathogens that cause skin infections. Berkov-Zrihen Y; Herzog IM; Feldman M; Sonn-Segev A; Roichman Y; Fridman M Bioorg Med Chem; 2013 Jun; 21(12):3624-31. PubMed ID: 23602621 [TBL] [Abstract][Full Text] [Related]
18. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Hale JD; Hancock RE Expert Rev Anti Infect Ther; 2007 Dec; 5(6):951-9. PubMed ID: 18039080 [TBL] [Abstract][Full Text] [Related]
19. The influence of the structural orientation of amide linkers on the serum compatibility and lung transfection properties of cationic amphiphiles. Srujan M; Chandrashekhar V; Reddy RC; Prabhakar R; Sreedhar B; Chaudhuri A Biomaterials; 2011 Aug; 32(22):5231-40. PubMed ID: 21501864 [TBL] [Abstract][Full Text] [Related]
20. Discovery of novel histidine-derived lipo-amino acids: applied in the synthesis of ultra-short antimicrobial peptidomimetics having potent antimicrobial activity, salt resistance and protease stability. Ahn M; Murugan RN; Jacob B; Hyun JK; Cheong C; Hwang E; Park HN; Seo JH; Srinivasrao G; Lee KS; Shin SY; Bang JK Eur J Med Chem; 2013 Oct; 68():10-8. PubMed ID: 23933046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]