BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 25652464)

  • 1. Branching instability in expanding bacterial colonies.
    Giverso C; Verani M; Ciarletta P
    J R Soc Interface; 2015 Mar; 12(104):20141290. PubMed ID: 25652464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging morphologies in round bacterial colonies: comparing volumetric versus chemotactic expansion.
    Giverso C; Verani M; Ciarletta P
    Biomech Model Mechanobiol; 2016 Jun; 15(3):643-61. PubMed ID: 26296713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanically driven branching of bacterial colonies.
    Giverso C; Verani M; Ciarletta P
    J Biomech Eng; 2015 Jul; 137(7):. PubMed ID: 25806474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamics of bacterial colonies: a model.
    Lega J; Passot T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031906. PubMed ID: 12689100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lubricating bacteria model for branching growth of bacterial colonies.
    Kozlovsky Y; Cohen I; Golding I; Ben-Jacob E
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):7025-35. PubMed ID: 11969691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generic modelling of cooperative growth patterns in bacterial colonies.
    Ben-Jacob E; Schochet O; Tenenbaum A; Cohen I; Czirók A; Vicsek T
    Nature; 1994 Mar; 368(6466):46-9. PubMed ID: 8107881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-similar dynamics of bacterial chemotaxis.
    Ngamsaad W; Khompurngson K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):062901. PubMed ID: 23367993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collective chemotaxis and segregation of active bacterial colonies.
    Ben Amar M
    Sci Rep; 2016 Feb; 6():21269. PubMed ID: 26888040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flower-like patterns in multi-species bacterial colonies.
    Xiong L; Cao Y; Cooper R; Rappel WJ; Hasty J; Tsimring L
    Elife; 2020 Jan; 9():. PubMed ID: 31933477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractal morphogenesis by a bacterial cell population.
    Matsuyama T; Matsushita M
    Crit Rev Microbiol; 1993; 19(2):117-35. PubMed ID: 8338618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical models and simulations of bacterial growth and chemotaxis in a diffusion gradient chamber.
    Chiu C; Hoppensteadt FC
    J Math Biol; 2001 Feb; 42(2):120-44. PubMed ID: 11261315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphodynamics of a growing microbial colony driven by cell death.
    Ghosh P; Levine H
    Phys Rev E; 2017 Nov; 96(5-1):052404. PubMed ID: 29347664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemotaxis migration and morphogenesis of living colonies.
    Ben Amar M
    Eur Phys J E Soft Matter; 2013 Jun; 36(6):64. PubMed ID: 23807468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation, collective motion, and merging of macroscopic bacterial aggregates.
    Courcoubetis G; Gangan MS; Lim S; Guo X; Haas S; Boedicker JQ
    PLoS Comput Biol; 2022 Jan; 18(1):e1009153. PubMed ID: 34982765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multiple-relaxation-time lattice-boltzmann model for bacterial chemotaxis: effects of initial concentration, diffusion, and hydrodynamic dispersion on traveling bacterial bands.
    Yan Z; Hilpert M
    Bull Math Biol; 2014 Oct; 76(10):2449-75. PubMed ID: 25223537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Migration of chemotactic bacteria in soft agar: role of gel concentration.
    Croze OA; Ferguson GP; Cates ME; Poon WC
    Biophys J; 2011 Aug; 101(3):525-34. PubMed ID: 21806920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collective colony growth is optimized by branching pattern formation in Pseudomonas aeruginosa.
    Luo N; Wang S; Lu J; Ouyang X; You L
    Mol Syst Biol; 2021 Apr; 17(4):e10089. PubMed ID: 33900031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems.
    Chiu C; Yu JL
    Math Biosci Eng; 2007 Apr; 4(2):187-203. PubMed ID: 17658923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling spatio-temporal patterns generated by Bacillus subtilis.
    Kawasaki K; Mochizuki A; Matsushita M; Umeda T; Shigesada N
    J Theor Biol; 1997 Sep; 188(2):177-85. PubMed ID: 9379672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.