BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 25652512)

  • 21. Single pixel hyperspectral Cherenkov-excited fluorescence imaging with LINAC X-ray sheet scanning and spectral unmixing.
    Cao X; Jiang S; Gunn JR; Bruza P; Pogue BW
    Opt Lett; 2020 Nov; 45(22):6130-6133. PubMed ID: 33186932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electron contamination modeling and skin dose in 6 MV longitudinal field MRIgRT: Impact of the MRI and MRI fringe field.
    Oborn BM; Metcalfe PE; Butson MJ; Rosenfeld AB; Keall PJ
    Med Phys; 2012 Feb; 39(2):874-90. PubMed ID: 22320797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Technical note: Correcting angular dependencies using non-polarized components of Cherenkov light in water during high-energy X-ray irradiation.
    Toyonaga C; Yamamoto S; Yabe T; Okudaira K; Yogo K; Hirano Y; Kataoka J
    Med Phys; 2022 Aug; 49(8):5409-5416. PubMed ID: 35670250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SU-E-I-94: External Beam Radiation Cherenkov Emission in Tissue Used for Tissue Oxygen Sensing.
    Zhang R; Kanick S; Vinogradov S; Esipova T; Pogue B
    Med Phys; 2012 Jun; 39(6Part5):3646-3647. PubMed ID: 28517630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual-beam imaging for online verification of radiotherapy field placement.
    Jaffray DA; Chawla K; Yu C; Wong JW
    Int J Radiat Oncol Biol Phys; 1995 Dec; 33(5):1273-80. PubMed ID: 7493852
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determining the Performance of Fluorescence Molecular Imaging Devices Using Traceable Working Standards With SI Units of Radiance.
    Zhu B; Rasmussen JC; Litorja M; Sevick-Muraca EM
    IEEE Trans Med Imaging; 2016 Mar; 35(3):802-11. PubMed ID: 26552078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water.
    Glaser AK; Andreozzi JM; Zhang R; Pogue BW; Gladstone DJ
    Med Phys; 2015 Jul; 42(7):4127-36. PubMed ID: 26133613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Imaging of moving fiducial markers during radiotherapy using a fast, efficient active pixel sensor based EPID.
    Osmond JP; Zin HM; Harris EJ; Lupica G; Allinson NM; Evans PM
    Med Phys; 2011 Nov; 38(11):6152-9. PubMed ID: 22047380
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electronic cameras for low-light microscopy.
    Rasnik I; French T; Jacobson K; Berland K
    Methods Cell Biol; 2013; 114():211-41. PubMed ID: 23931509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-Grating Monolithic Spatial Heterodyne Raman Spectrometer: An Investigation on the Effects of Detector Selection.
    Kelly EM; Egan MJ; Colόn A; Angel SM; Sharma SK
    Appl Spectrosc; 2023 Dec; 77(12):1411-1423. PubMed ID: 37801484
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of entrance exposure and signal-to-noise ratio between an SBDX prototype and a wide-beam cardiac angiographic system.
    Speidel MA; Wilfley BP; Star-Lack JM; Heanue JA; Betts TD; Van Lysel MS
    Med Phys; 2006 Aug; 33(8):2728-43. PubMed ID: 16964848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BrachyView: proof-of-principle of a novel in-body gamma camera for low dose-rate prostate brachytherapy.
    Petasecca M; Loo KJ; Safavi-Naeini M; Han Z; Metcalfe PE; Meikle S; Pospisil S; Jakubek J; Bucci JA; Zaider M; Lerch ML; Qi Y; Rosenfeld AB
    Med Phys; 2013 Apr; 40(4):041709. PubMed ID: 23556879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Front-illuminated versus back-illuminated photon-counting CCD-based gamma camera: important consequences for spatial resolution and energy resolution.
    Heemskerk JW; Westra AH; Linotte PM; Ligtvoet KM; Zbijewski W; Beekman FJ
    Phys Med Biol; 2007 Apr; 52(8):N149-62. PubMed ID: 17404450
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accurate dose measurements using Cherenkov emission polarization imaging.
    Cloutier É; Archambault L; Beaulieu L
    Med Phys; 2022 Aug; 49(8):5417-5422. PubMed ID: 35502867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Radiotherapy-induced Cherenkov luminescence imaging in a human body phantom.
    Ahmed SR; Jia JM; Bruza P; Vinogradov S; Jiang S; Gladstone DJ; Jarvis LA; Pogue BW
    J Biomed Opt; 2018 Mar; 23(3):1-4. PubMed ID: 29560623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Imaging luminescent tattoo inks for direct visualization of linac and cobalt irradiation.
    LaRochelle EPM; Soter J; Barrios L; Guzmán M; Streeter SS; Gunn JR; Bejarano S; Pogue BW
    Med Phys; 2020 Apr; 47(4):1807-1812. PubMed ID: 32056218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Camera technologies for low light imaging: overview and relative advantages.
    Moomaw B
    Methods Cell Biol; 2013; 114():243-83. PubMed ID: 23931510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Signal intensity analysis and optimization for in vivo imaging of Cherenkov and excited luminescence.
    LaRochelle EPM; Shell JR; Gunn JR; Davis SC; Pogue BW
    Phys Med Biol; 2018 Apr; 63(8):085019. PubMed ID: 29558363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-time Cherenkov emission portal imaging during CyberKnife® radiotherapy.
    Roussakis Y; Zhang R; Heyes G; Webster G; Mason S; Green S; Pogue B; Dehghani H
    Phys Med Biol; 2015 Nov; 60(22):N419-25. PubMed ID: 26513015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Per-Pixel Coded Exposure for High-Speed and High-Resolution Imaging Using a Digital Micromirror Device Camera.
    Feng W; Zhang F; Qu X; Zheng S
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26959023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.