BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 25652776)

  • 1. Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study.
    Mondal M; Mukherjee S; Halder S; Bhattacharyya D
    Biopolymers; 2015 Jun; 103(6):328-38. PubMed ID: 25652776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid simulation approach incorporating microscopic interaction along with rigid body degrees of freedom for stacking between base pairs.
    Mondal M; Halder S; Chakrabarti J; Bhattacharyya D
    Biopolymers; 2016 Apr; 105(4):212-26. PubMed ID: 26600167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stacking geometry between two sheared Watson-Crick basepairs: Computational chemistry and bioinformatics based prediction.
    Maiti S; Mukherjee D; Roy P; Chakrabarti J; Bhattacharyya D
    Biochim Biophys Acta Gen Subj; 2020 Jul; 1864(7):129600. PubMed ID: 32179130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family.
    Sharma P; Mitra A; Sharma S; Singh H; Bhattacharyya D
    J Biomol Struct Dyn; 2008 Jun; 25(6):709-32. PubMed ID: 18399704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA structure and dynamics: a base pairing perspective.
    Halder S; Bhattacharyya D
    Prog Biophys Mol Biol; 2013 Nov; 113(2):264-83. PubMed ID: 23891726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy hyperspace for stacking interaction in AU/AU dinucleotide step: Dispersion-corrected density functional theory study.
    Mukherjee S; Kailasam S; Bansal M; Bhattacharyya D
    Biopolymers; 2014 Jan; 101(1):107-20. PubMed ID: 23722519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs.
    Lee JC; Gutell RR
    J Mol Biol; 2004 Dec; 344(5):1225-49. PubMed ID: 15561141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of stacking overlap in nucleic acid structures: algorithm and application.
    Pingali PK; Halder S; Mukherjee D; Basu S; Banerjee R; Choudhury D; Bhattacharyya D
    J Comput Aided Mol Des; 2014 Aug; 28(8):851-67. PubMed ID: 24990628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis.
    Das J; Mukherjee S; Mitra A; Bhattacharyya D
    J Biomol Struct Dyn; 2006 Oct; 24(2):149-61. PubMed ID: 16928138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs.
    Burkard ME; Kierzek R; Turner DH
    J Mol Biol; 1999 Jul; 290(5):967-82. PubMed ID: 10438596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear magnetic resonance spectroscopy and molecular modeling reveal that different hydrogen bonding patterns are possible for G.U pairs: one hydrogen bond for each G.U pair in r(GGCGUGCC)(2) and two for each G.U pair in r(GAGUGCUC)(2).
    Chen X; McDowell JA; Kierzek R; Krugh TR; Turner DH
    Biochemistry; 2000 Aug; 39(30):8970-82. PubMed ID: 10913310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An innate twist between Crick's wobble and Watson-Crick base pairs.
    Ananth P; Goldsmith G; Yathindra N
    RNA; 2013 Aug; 19(8):1038-53. PubMed ID: 23861536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence dependent variations in RNA duplex are related to non-canonical hydrogen bond interactions in dinucleotide steps.
    Kailasam S; Bhattacharyya D; Bansal M
    BMC Res Notes; 2014 Feb; 7():83. PubMed ID: 24502340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stacking interactions in RNA and DNA: Roll-slide energy hyperspace for ten unique dinucleotide steps.
    Mukherjee S; Kailasam S; Bansal M; Bhattacharyya D
    Biopolymers; 2015 Mar; 103(3):134-47. PubMed ID: 25257334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stacking interactions involving non-Watson-Crick basepairs: dispersion corrected density functional theory studies.
    Maiti S; Bhattacharyya D
    Phys Chem Chem Phys; 2017 Nov; 19(42):28718-28730. PubMed ID: 29043327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New information content in RNA base pairing deduced from quantitative analysis of high-resolution structures.
    Olson WK; Esguerra M; Xin Y; Lu XJ
    Methods; 2009 Mar; 47(3):177-86. PubMed ID: 19150407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, stability, and dynamics of canonical and noncanonical base pairs: quantum chemical studies.
    Roy A; Panigrahi S; Bhattacharyya M; Bhattacharyya D
    J Phys Chem B; 2008 Mar; 112(12):3786-96. PubMed ID: 18318519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of intrinsic stacking energies of ten unique dinucleotide steps in A-RNA and B-DNA duplexes. Can we determine correct order of stability by quantum-chemical calculations?
    Svozil D; Hobza P; Sponer J
    J Phys Chem B; 2010 Jan; 114(2):1191-203. PubMed ID: 20000584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of an RNA duplex r(GGCGBrUGCGCU)2 with terminal and internal tandem G.U base pairs.
    Utsunomiya R; Suto K; Balasundaresan D; Fukamizu A; Kumar PK; Mizuno H
    Acta Crystallogr D Biol Crystallogr; 2006 Mar; 62(Pt 3):331-8. PubMed ID: 16510980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure of a DNA double helix incorporating four consecutive non-Watson-Crick base-pairs.
    Chou SH; Chin KH
    J Mol Biol; 2001 Sep; 312(4):769-81. PubMed ID: 11575931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.