These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

553 related articles for article (PubMed ID: 25652823)

  • 101. Asymmetric temporal integration of layer 4 and layer 2/3 inputs in visual cortex.
    Hang GB; Dan Y
    J Neurophysiol; 2011 Jan; 105(1):347-55. PubMed ID: 21068267
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Dynamic properties of excitatory synaptic connections involving layer 4 pyramidal cells in adult rat and cat neocortex.
    Bannister AP; Thomson AM
    Cereb Cortex; 2007 Sep; 17(9):2190-203. PubMed ID: 17116652
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Pre- and postsynaptic MEF2C promote experience-dependent, input-specific development of cortical Layer 4 to Layer 2/3 excitatory synapses and regulate activity-dependent expression of synaptic cell adhesion molecules.
    Putman JN; Watson SD; Zhang Z; Khandelwal N; Kulkarni A; Gibson JR; Huber KM
    J Neurosci; 2024 Sep; ():. PubMed ID: 39317473
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Single spikes drive sequential propagation and routing of activity in a cortical network.
    Riquelme JL; Hemberger M; Laurent G; Gjorgjieva J
    Elife; 2023 Feb; 12():. PubMed ID: 36780217
    [TBL] [Abstract][Full Text] [Related]  

  • 105. High-throughput volumetric mapping of synaptic transmission.
    Chen W; Ge X; Zhang Q; Natan RG; Fan JL; Scanziani M; Ji N
    Nat Methods; 2024 Jul; 21(7):1298-1305. PubMed ID: 38898094
    [TBL] [Abstract][Full Text] [Related]  

  • 106. The mechanics of correlated variability in segregated cortical excitatory subnetworks.
    Negrón A; Getz MP; Handy G; Doiron B
    Proc Natl Acad Sci U S A; 2024 Jul; 121(28):e2306800121. PubMed ID: 38959037
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Input-specific synaptic depression shapes temporal integration in mouse visual cortex.
    Li JY; Glickfeld LL
    Neuron; 2023 Oct; 111(20):3255-3269.e6. PubMed ID: 37543037
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Excitation creates a distributed pattern of cortical suppression due to varied recurrent input.
    O'Rawe JF; Zhou Z; Li AJ; LaFosse PK; Goldbach HC; Histed MH
    Neuron; 2023 Dec; 111(24):4086-4101.e5. PubMed ID: 37865083
    [TBL] [Abstract][Full Text] [Related]  

  • 109. High-dimensional geometry of population responses in visual cortex.
    Stringer C; Pachitariu M; Steinmetz N; Carandini M; Harris KD
    Nature; 2019 Jul; 571(7765):361-365. PubMed ID: 31243367
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Analysis of segmentation ontology reveals the similarities and differences in connectivity onto L2/3 neurons in mouse V1.
    Brown APY; Cossell L; Strom M; Tyson AL; Vélez-Fort M; Margrie TW
    Sci Rep; 2021 Mar; 11(1):4983. PubMed ID: 33654118
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex.
    Hrvatin S; Hochbaum DR; Nagy MA; Cicconet M; Robertson K; Cheadle L; Zilionis R; Ratner A; Borges-Monroy R; Klein AM; Sabatini BL; Greenberg ME
    Nat Neurosci; 2018 Jan; 21(1):120-129. PubMed ID: 29230054
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Analysis of Structure and Dynamics in Three-Neuron Motifs.
    Krauss P; Zankl A; Schilling A; Schulze H; Metzner C
    Front Comput Neurosci; 2019; 13():5. PubMed ID: 30792635
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Diverse coupling of neurons to populations in sensory cortex.
    Okun M; Steinmetz N; Cossell L; Iacaruso MF; Ko H; Barthó P; Moore T; Hofer SB; Mrsic-Flogel TD; Carandini M; Harris KD
    Nature; 2015 May; 521(7553):511-515. PubMed ID: 25849776
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex.
    Poort J; Khan AG; Pachitariu M; Nemri A; Orsolic I; Krupic J; Bauza M; Sahani M; Keller GB; Mrsic-Flogel TD; Hofer SB
    Neuron; 2015 Jun; 86(6):1478-90. PubMed ID: 26051421
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Synaptic organization of visual space in primary visual cortex.
    Iacaruso MF; Gasler IT; Hofer SB
    Nature; 2017 Jul; 547(7664):449-452. PubMed ID: 28700575
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Anatomy and function of an excitatory network in the visual cortex.
    Lee WC; Bonin V; Reed M; Graham BJ; Hood G; Glattfelder K; Reid RC
    Nature; 2016 Apr; 532(7599):370-4. PubMed ID: 27018655
    [TBL] [Abstract][Full Text] [Related]  

  • 117. A motor cortex circuit for motor planning and movement.
    Li N; Chen TW; Guo ZV; Gerfen CR; Svoboda K
    Nature; 2015 Mar; 519(7541):51-6. PubMed ID: 25731172
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators.
    Fosque BF; Sun Y; Dana H; Yang CT; Ohyama T; Tadross MR; Patel R; Zlatic M; Kim DS; Ahrens MB; Jayaraman V; Looger LL; Schreiter ER
    Science; 2015 Feb; 347(6223):755-60. PubMed ID: 25678659
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Explicit memory creation during sleep demonstrates a causal role of place cells in navigation.
    de Lavilléon G; Lacroix MM; Rondi-Reig L; Benchenane K
    Nat Neurosci; 2015 Apr; 18(4):493-5. PubMed ID: 25751533
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Dual-channel circuit mapping reveals sensorimotor convergence in the primary motor cortex.
    Hooks BM; Lin JY; Guo C; Svoboda K
    J Neurosci; 2015 Mar; 35(10):4418-26. PubMed ID: 25762684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.