These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 25652927)

  • 1. Transmitter release is evoked with low probability predominately by calcium flux through single channel openings at the frog neuromuscular junction.
    Luo F; Dittrich M; Cho S; Stiles JR; Meriney SD
    J Neurophysiol; 2015 Apr; 113(7):2480-9. PubMed ID: 25652927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+ from one or two channels controls fusion of a single vesicle at the frog neuromuscular junction.
    Shahrezaei V; Cao A; Delaney KR
    J Neurosci; 2006 Dec; 26(51):13240-9. PubMed ID: 17182774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of presynaptic calcium channel modulation by roscovitine on transmitter release at the adult frog neuromuscular junction.
    Cho S; Meriney SD
    Eur J Neurosci; 2006 Jun; 23(12):3200-8. PubMed ID: 16820010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic vesicle recruitment for release explored by Monte Carlo stimulation at the crayfish neuromuscular junction.
    Kennedy KM; Piper ST; Atwood HL
    Can J Physiol Pharmacol; 1999 Sep; 77(9):634-50. PubMed ID: 10566941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into short-term synaptic facilitation at the frog neuromuscular junction.
    Ma J; Kelly L; Ingram J; Price TJ; Meriney SD; Dittrich M
    J Neurophysiol; 2015 Jan; 113(1):71-87. PubMed ID: 25210157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The architecture of active zone material at the frog's neuromuscular junction.
    Harlow ML; Ress D; Stoschek A; Marshall RM; McMahan UJ
    Nature; 2001 Jan; 409(6819):479-84. PubMed ID: 11206537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynasore, an inhibitor of dynamin, increases the probability of transmitter release.
    Douthitt HL; Luo F; McCann SD; Meriney SD
    Neuroscience; 2011 Jan; 172():187-95. PubMed ID: 21056636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building a bilayer model of the neuromuscular synapse.
    Woodbury DJ
    Cell Biochem Biophys; 1999; 30(3):303-29. PubMed ID: 10403054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Action of brown widow spider venom and botulinum toxin on the frog neuromuscular junction examined with the freeze-fracture technique.
    Pumplin DW; Reese TS
    J Physiol; 1977 Dec; 273(2):443-57. PubMed ID: 202700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release.
    Cooper RL; Winslow JL; Govind CK; Atwood HL
    J Neurophysiol; 1996 Jun; 75(6):2451-66. PubMed ID: 8793756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-pixel optical fluctuation analysis of calcium channel function in active zones of motor nerve terminals.
    Luo F; Dittrich M; Stiles JR; Meriney SD
    J Neurosci; 2011 Aug; 31(31):11268-81. PubMed ID: 21813687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can presynaptic depolarization release transmitter without calcium influx?
    Zucker RS; Landò L; Fogelson A
    J Physiol (Paris); 1986; 81(4):237-45. PubMed ID: 2883310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variations in Ca
    Nakamura Y; Reva M; DiGregorio DA
    J Neurosci; 2018 Apr; 38(16):3971-3987. PubMed ID: 29563180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct measurement of ACh release from exposed frog nerve terminals: constraints on interpretation of non-quantal release.
    Grinnell AD; Gundersen CB; Meriney SD; Young SH
    J Physiol; 1989 Dec; 419():225-51. PubMed ID: 2621630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single Calcium Channel Nanodomains Drive Presynaptic Calcium Entry at Lamprey Reticulospinal Presynaptic Terminals.
    Ramachandran S; Rodgriguez S; Potcoava M; Alford S
    J Neurosci; 2022 Mar; 42(12):2385-2403. PubMed ID: 35063999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of spatiotemporal calcium dynamics within presynaptic active zones on synaptic delay at the frog neuromuscular junction.
    Homan AE; Laghaei R; Dittrich M; Meriney SD
    J Neurophysiol; 2018 Feb; 119(2):688-699. PubMed ID: 29167324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical monitoring of transmitter release and synaptic vesicle recycling at the frog neuromuscular junction.
    Betz WJ; Bewick GS
    J Physiol; 1993 Jan; 460():287-309. PubMed ID: 8387585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization and function of transmitter release sites at the neuromuscular junction.
    Meriney SD; Dittrich M
    J Physiol; 2013 Jul; 591(13):3159-65. PubMed ID: 23613535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vesicle trafficking and recycling at the neuromuscular junction: two pathways for endocytosis.
    Kidokoro Y
    Int Rev Neurobiol; 2006; 75():145-64. PubMed ID: 17137927
    [No Abstract]   [Full Text] [Related]  

  • 20. Transmitter release site organization can predict synaptic function at the neuromuscular junction.
    Laghaei R; Ma J; Tarr TB; Homan AE; Kelly L; Tilvawala MS; Vuocolo BS; Rajasekaran HP; Meriney SD; Dittrich M
    J Neurophysiol; 2018 Apr; 119(4):1340-1355. PubMed ID: 29357458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.