These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 25652927)

  • 21. L-type calcium channels are involved in fast endocytosis at the mouse neuromuscular junction.
    Perissinotti PP; Giugovaz Tropper B; Uchitel OD
    Eur J Neurosci; 2008 Mar; 27(6):1333-44. PubMed ID: 18336569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Consequences of molecular-level Ca2+ channel and synaptic vesicle colocalization for the Ca2+ microdomain and neurotransmitter exocytosis: a monte carlo study.
    Shahrezaei V; Delaney KR
    Biophys J; 2004 Oct; 87(4):2352-64. PubMed ID: 15454435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relative distribution of Ca2+ channels at the crayfish inhibitory neuromuscular junction.
    Allana TN; Lin JW
    J Neurophysiol; 2004 Sep; 92(3):1491-500. PubMed ID: 15140907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single calcium channel domain gating of synaptic vesicle fusion at fast synapses; analysis by graphic modeling.
    Stanley EF
    Channels (Austin); 2015; 9(5):324-33. PubMed ID: 26457441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Promiscuous and reversible blocker of presynaptic calcium channels in frog and crayfish neuromuscular junctions from Phoneutria nigriventer spider venom.
    Troncone LR; Georgiou J; Hua SY; Elrick D; Lebrun I; Magnoli F; Charlton MP
    J Neurophysiol; 2003 Nov; 90(5):3529-37. PubMed ID: 12890791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loss of β2-laminin alters calcium sensitivity and voltage-gated calcium channel maturation of neurotransmission at the neuromuscular junction.
    Chand KK; Lee KM; Schenning MP; Lavidis NA; Noakes PG
    J Physiol; 2015 Jan; 593(1):245-65. PubMed ID: 25556799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Location and function of vesicle clusters, active zones and Ca2+ channels in the lamprey presynaptic terminal.
    Photowala H; Freed R; Alford S
    J Physiol; 2005 Nov; 569(Pt 1):119-35. PubMed ID: 16141275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction.
    Heuser JE; Reese TS
    J Cell Biol; 1973 May; 57(2):315-44. PubMed ID: 4348786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Are unreliable release mechanisms conserved from NMJ to CNS?
    Tarr TB; Dittrich M; Meriney SD
    Trends Neurosci; 2013 Jan; 36(1):14-22. PubMed ID: 23102681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Membrane cholesterol regulates different modes of synaptic vesicle release and retrieval at the frog neuromuscular junction.
    Rodrigues HA; Lima RF; Fonseca Mde C; Amaral EA; Martinelli PM; Naves LA; Gomez MV; Kushmerick C; Prado MA; Guatimosim C
    Eur J Neurosci; 2013 Oct; 38(7):2978-87. PubMed ID: 23841903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels.
    Jarvis SE; Zamponi GW
    Cell Calcium; 2005 May; 37(5):483-8. PubMed ID: 15820397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative freeze-fracture analysis of the frog neuromuscular junction synapse--I. Naturally occurring variability in active zone structure.
    Pawson PA; Grinnell AD; Wolowske B
    J Neurocytol; 1998 Jun; 27(5):361-77. PubMed ID: 9923981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantal parameters of transmission at the frog neuromuscular junction.
    Volle RL; Branisteanu DD
    Naunyn Schmiedebergs Arch Pharmacol; 1976 Nov; 295(2):103-8. PubMed ID: 186720
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of synaptic vesicle docking by different classes of macromolecules in active zone material.
    Szule JA; Harlow ML; Jung JH; De-Miguel FF; Marshall RM; McMahan UJ
    PLoS One; 2012; 7(3):e33333. PubMed ID: 22438915
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rab3a deletion reduces vesicle docking and transmitter release at the mouse diaphragm synapse.
    Coleman WL; Bill CA; Bykhovskaia M
    Neuroscience; 2007 Aug; 148(1):1-6. PubMed ID: 17640821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Presynaptic Ca(2+) influx at the inhibitor of the crayfish neuromuscular junction: a photometric study at a high time resolution.
    Vyshedskiy A; Lin JW
    J Neurophysiol; 2000 Jan; 83(1):552-62. PubMed ID: 10634895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular mechanism of active zone organization at vertebrate neuromuscular junctions.
    Nishimune H
    Mol Neurobiol; 2012 Feb; 45(1):1-16. PubMed ID: 22135013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid regulation of vesicle priming explains synaptic facilitation despite heterogeneous vesicle:Ca
    Kobbersmed JR; Grasskamp AT; Jusyte M; Böhme MA; Ditlevsen S; Sørensen JB; Walter AM
    Elife; 2020 Feb; 9():. PubMed ID: 32077852
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probabilistic secretion of quanta and the synaptosecretosome hypothesis: evoked release at active zones of varicosities, boutons, and endplates.
    Bennett MR; Gibson WG; Robinson J
    Biophys J; 1997 Oct; 73(4):1815-29. PubMed ID: 9336177
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The structural organization of the readily releasable pool of synaptic vesicles.
    Rizzoli SO; Betz WJ
    Science; 2004 Mar; 303(5666):2037-9. PubMed ID: 15044806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.