These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25652930)

  • 1. Incorporating 3D-printing technology in the design of head-caps and electrode drives for recording neurons in multiple brain regions.
    Headley DB; DeLucca MV; Haufler D; Paré D
    J Neurophysiol; 2015 Apr; 113(7):2721-32. PubMed ID: 25652930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ceramic-based multisite electrode arrays for chronic single-neuron recording.
    Moxon KA; Leiser SC; Gerhardt GA; Barbee KA; Chapin JK
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):647-56. PubMed ID: 15072219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo validation of the electronic depth control probes.
    Dombovári B; Fiáth R; Kerekes BP; Tóth E; Wittner L; Horváth D; Seidl K; Herwik S; Torfs T; Paul O; Ruther P; Neves H; Ulbert I
    Biomed Tech (Berl); 2014 Aug; 59(4):283-9. PubMed ID: 24114890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A motorized microdrive for recording of neural ensembles in awake behaving rats.
    Venkateswaran R; Boldt C; Parthasarathy J; Ziaie B; Erdman AG; Redish AD
    J Biomech Eng; 2005 Nov; 127(6):1035-40. PubMed ID: 16438246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice.
    Osanai H; Kitamura T; Yamamoto J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal microdrive and head cap system for silicon probe recovery in freely moving rodent.
    Vöröslakos M; Petersen PC; Vöröslakos B; Buzsáki G
    Elife; 2021 May; 10():. PubMed ID: 34009122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 3D slim-base probe array for in vivo recorded neuron activity.
    Aarts AA; Neves HP; Ulbert I; Wittner L; Grand L; Fontes MA; Herwik S; Kisban S; Paul O; Ruther P; Puers RP; Van Hoof C
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5798-801. PubMed ID: 19164035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel high channel-count system for acute multisite neuronal recordings.
    Hofmann UG; Folkers A; Mösch F; Malina T; Menne KM; Biella G; Fagerstedt P; De Schutter E; Jensen W; Yoshida K; Hoehl D; Thomas U; Kindlundh MG; Norlin P; de Curtis M
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1672-7. PubMed ID: 16916102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-multi-probe electrode array to measure neural signals.
    Chen CH; Yao DJ; Tseng SH; Lu SW; Chiao CC; Yeh SR
    Biosens Bioelectron; 2009 Mar; 24(7):1911-7. PubMed ID: 19027284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous in vivo recording of local brain temperature and electrophysiological signals with a novel neural probe.
    Fekete Z; Csernai M; Kocsis K; Horváth ÁC; Pongrácz A; Barthó P
    J Neural Eng; 2017 Jun; 14(3):034001. PubMed ID: 28198704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The systemDrive: a Multisite, Multiregion Microdrive with Independent Drive Axis Angling for Chronic Multimodal Systems Neuroscience Recordings in Freely Behaving Animals.
    Billard MW; Bahari F; Kimbugwe J; Alloway KD; Gluckman BJ
    eNeuro; 2018; 5(6):. PubMed ID: 30627656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compact wireless neural recording system for small animals using silicon-based probe arrays.
    Ruther P; Holzhammer T; Herwik S; Rich PD; Dalley JW; Paul O; Holtzman T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2284-7. PubMed ID: 22254797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A lightweight feedback-controlled microdrive for chronic neural recordings.
    Jovalekic A; Cavé-Lopez S; Canopoli A; Ondracek JM; Nager A; Vyssotski AL; Hahnloser RH
    J Neural Eng; 2017 Apr; 14(2):026006. PubMed ID: 28071593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic microactuators for precise positioning of neural microelectrodes.
    Muthuswamy J; Okandan M; Jain T; Gilletti A
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1748-55. PubMed ID: 16235660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The DMCdrive: practical 3D-printable micro-drive system for reliable chronic multi-tetrode recording and optogenetic application in freely behaving rodents.
    Kim H; Brünner HS; Carlén M
    Sci Rep; 2020 Jul; 10(1):11838. PubMed ID: 32678238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical recording with polypyrrole microwire electrodes.
    Bae WJ; Ruddy BP; Richardson AG; Hunter IW; Bizzi E
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5794-7. PubMed ID: 19164034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A compact architecture for three-dimensional neural microelectrode arrays.
    Perlin GE; Wise KD
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5806-9. PubMed ID: 19164037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Miniature motorized microdrive and commutator system for chronic neural recording in small animals.
    Fee MS; Leonardo A
    J Neurosci Methods; 2001 Dec; 112(2):83-94. PubMed ID: 11716944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modification of the Harper-McGinty microdrive for use in chronically prepared rabbits.
    McKown MD; Schadt JC
    J Neurosci Methods; 2006 Jun; 153(2):239-42. PubMed ID: 16406040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.