BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25653005)

  • 1. Changes of the mRNA expression pattern of Zn transporters: a probable mechanism for cadmium retention and zinc redistribution in the suckling rat tissues.
    Chemek M; Boughammoura S; Mimouna SB; Chouchene L; Banni M; Messaoudi I
    Biol Trace Elem Res; 2015 Jun; 165(2):173-82. PubMed ID: 25653005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc transporters in the rat mammary gland respond to marginal zinc and vitamin A intakes during lactation.
    Kelleher SL; Lönnerdal B
    J Nutr; 2002 Nov; 132(11):3280-5. PubMed ID: 12421840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zn transporter levels and localization change throughout lactation in rat mammary gland and are regulated by Zn in mammary cells.
    Kelleher SL; Lönnerdal B
    J Nutr; 2003 Nov; 133(11):3378-85. PubMed ID: 14608047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early-Life Exposure to Cadmium Triggers Distinct Zn-Dependent Protein Expression Patterns and Impairs Brain Development.
    Mimouna SB; Chemek M; Boughammoura S; Banni M; Messaoudi I
    Biol Trace Elem Res; 2018 Aug; 184(2):409-421. PubMed ID: 29164515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cadmium in milk and mammary gland in rats and mice.
    Petersson Grawé K; Oskarsson A
    Arch Toxicol; 2000 Jan; 73(10-11):519-27. PubMed ID: 10663382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cadmium-induced ovarian pathophysiology is mediated by change in gene expression pattern of zinc transporters in zebrafish (Danio rerio).
    Chouchene L; Banni M; Kerkeni A; Saïd K; Messaoudi I
    Chem Biol Interact; 2011 Sep; 193(2):172-9. PubMed ID: 21756885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zip3 (Slc39a3) functions in zinc reuptake from the alveolar lumen in lactating mammary gland.
    Kelleher SL; Lopez V; Lönnerdal B; Dufner-Beattie J; Andrews GK
    Am J Physiol Regul Integr Comp Physiol; 2009 Jul; 297(1):R194-201. PubMed ID: 19458277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the zinc-transporting system in mammary cells: molecular analysis reveals a phenotype-dependent zinc-transporting network during lactation.
    Kelleher SL; Velasquez V; Croxford TP; McCormick NH; Lopez V; MacDavid J
    J Cell Physiol; 2012 Apr; 227(4):1761-70. PubMed ID: 21702047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protective role of zinc against the neurotoxicity induced by exposure to cadmium during gestation and lactation periods on hippocampal volume of pups tested in early adulthood.
    Ben Mimouna S; Chemek M; Boughammoura S; Haouas Z; Messaoudi I
    Drug Chem Toxicol; 2018 Oct; 41(4):424-433. PubMed ID: 29722553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of metallothioneins and ZnT-1 transporter expression in human hepatoma cells HepG2 exposed to zinc and cadmium.
    Urani C; Melchioretto P; Gribaldo L
    Toxicol In Vitro; 2010 Mar; 24(2):370-4. PubMed ID: 19900532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of Bone Zinc Metabolism during Postnatal Development of Rats after Early Life Exposure to Cadmium.
    Boughammoura S; Ben Mimouna S; Chemek M; Ostertag A; Cohen-Solal M; Messaoudi I
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32059372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cadmium, iron and zinc interaction and hematological parameters in rat dams and their offspring.
    Mikolić A; Schönwald N; Piasek M
    J Trace Elem Med Biol; 2016 Dec; 38():108-116. PubMed ID: 27601230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain difference of cadmium accumulation by liver slices of inbred Wistar-Imamichi and Fischer 344 rats.
    Shimada H; Yasutake A; Hirashima T; Takamure Y; Kitano T; Waalkes MP; Imamura Y
    Toxicol In Vitro; 2008 Mar; 22(2):338-43. PubMed ID: 17980552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of dietary selenium supplementation on cadmium absorption and retention in suckling rats.
    Lazarus M; Orct T; Jurasoviæ J; Blanuša M
    Biometals; 2009 Dec; 22(6):973-83. PubMed ID: 19499192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marginal maternal Zn intake in rats alters mammary gland Cu transporter levels and milk Cu concentration and affects neonatal Cu metabolism.
    Kelleher SL; Lönnerdal B
    J Nutr; 2003 Jul; 133(7):2141-8. PubMed ID: 12840169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc deficiency is associated with increased brain zinc import and LIV-1 expression and decreased ZnT-1 expression in neonatal rats.
    Chowanadisai W; Kelleher SL; Lönnerdal B
    J Nutr; 2005 May; 135(5):1002-7. PubMed ID: 15867272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of testicular DAAM1 expression in zinc protection against cadmium-induced male rat reproductive toxicity.
    Chemek M; Venditti M; Boughamoura S; Mimouna SB; Messaoudi I; Minucci S
    J Cell Physiol; 2018 Jan; 233(1):630-640. PubMed ID: 28332181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protective role of zinc against the toxicity induced by exposure to cadmium during gestation and lactation on testis development.
    Chemek M; Mimouna SB; Boughammoura S; Delbès G; Messaoudi I
    Reprod Toxicol; 2016 Aug; 63():151-60. PubMed ID: 27288891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uteroplacental insufficiency reduces rat plasma leptin concentrations and alters placental leptin transporters: ameliorated with enhanced milk intake and nutrition.
    Briffa JF; O'Dowd R; Moritz KM; Romano T; Jedwab LR; McAinch AJ; Hryciw DH; Wlodek ME
    J Physiol; 2017 Jun; 595(11):3389-3407. PubMed ID: 28369926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mammary gland morphogenesis is enhanced by exposure to flaxseed or its major lignan during suckling in rats.
    Tan KP; Chen J; Ward WE; Thompson LU
    Exp Biol Med (Maywood); 2004 Feb; 229(2):147-57. PubMed ID: 14734793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.