These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 25653056)

  • 21. Ultrahigh-Density 256-Channel Neural Sensing Microsystem Using TSV-Embedded Neural Probes.
    Huang YC; Huang PT; Wu SL; Hu YC; You YH; Chen JM; Huang YY; Chang HC; Lin YH; Duann JR; Chiu TW; Hwang W; Chen KN; Chuang CT; Chiou JC
    IEEE Trans Biomed Circuits Syst; 2017 Oct; 11(5):1013-1025. PubMed ID: 28371785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A compact, low input capacitance neural recording amplifier.
    Ng KA; Xu YP
    IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):610-20. PubMed ID: 24144666
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micro-multi-probe electrode array to measure neural signals.
    Chen CH; Yao DJ; Tseng SH; Lu SW; Chiao CC; Yeh SR
    Biosens Bioelectron; 2009 Mar; 24(7):1911-7. PubMed ID: 19027284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An integrated multichannel neural recording analog front-end ASIC with area-efficient driven right leg circuit.
    Tao Tang ; Wang Ling Goh ; Lei Yao ; Jia Hao Cheong ; Yuan Gao
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():217-220. PubMed ID: 29059849
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Tunable-Gain Transimpedance Amplifier for CMOS-MEMS Resonators Characterization.
    Perelló-Roig R; Verd J; Bota S; Segura J
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Active electrode IC for EEG and electrical impedance tomography with continuous monitoring of contact impedance.
    Guermandi M; Cardu R; Franchi Scarselli E; Guerrieri R
    IEEE Trans Biomed Circuits Syst; 2015 Feb; 9(1):21-33. PubMed ID: 24860040
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A CMOS Microelectrode Array System With Reconfigurable Sub-Array Multiplexing Architecture Integrating 24,320 Electrodes and 380 Readout Channels.
    Cha JH; Park JH; Park Y; Shin H; Hwang KS; Cho IJ; Kim SJ
    IEEE Trans Biomed Circuits Syst; 2022 Dec; 16(6):1044-1056. PubMed ID: 36191109
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fully Integrated On-Chip Coil in 0.13 μm CMOS for Wireless Power Transfer Through Biological Media.
    Zargham M; Gulak PG
    IEEE Trans Biomed Circuits Syst; 2015 Apr; 9(2):259-71. PubMed ID: 25099630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A microelectrode/microelectronic hybrid device for brain implantable neuroprosthesis applications.
    Patterson WR; Song YK; Bull CW; Ozden I; Deangellis AP; Lay C; McKay JL; Nurmikko AV; Donoghue JD; Connors BW
    IEEE Trans Biomed Eng; 2004 Oct; 51(10):1845-53. PubMed ID: 15490832
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Low Noise CMOS Readout Based on a Polymer-Coated SAW Array for Miniature Electronic Nose.
    Wu CC; Liu SC; Chiu SW; Tang KT
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27792131
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variable-gain, low-noise amplification for sampling front ends.
    Rieger R
    IEEE Trans Biomed Circuits Syst; 2011 Jun; 5(3):253-61. PubMed ID: 23851476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Label-free CMOS bio sensor with on-chip noise reduction scheme for real-time quantitative monitoring of biomolecules.
    Seong-Jin Kim ; Euisik Yoon
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):189-96. PubMed ID: 23853141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A 2.55 NEF 76 dB CMRR DC-Coupled Fully Differential Difference Amplifier Based Analog Front End for Wearable Biomedical Sensors.
    Zhao Y; Shang Z; Lian Y
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):918-926. PubMed ID: 31247560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Time-Domain Analog Spatial Compressed Sensing Encoder for Multi-Channel Neural Recording.
    Okazawa T; Akita I
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29324675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural recording front-end designs for fully implantable neuroscience applications and neural prosthetic microsystems.
    Perlin GE; Sodagar AM; Wise KD
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2982-5. PubMed ID: 17946997
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A CMOS power-efficient low-noise current-mode front-end amplifier for neural signal recording.
    Wu CY; Chen WM; Kuo LT
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):107-14. PubMed ID: 23853293
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alternative post-processing on a CMOS chip to fabricate a planar microelectrode array.
    López-Huerta F; Herrera-May AL; Estrada-López JJ; Zuñiga-Islas C; Cervantes-Sanchez B; Soto E; Soto-Cruz BS
    Sensors (Basel); 2011; 11(11):10940-57. PubMed ID: 22346681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A 0.09 μW low power front-end biopotential amplifier for biosignal recording.
    Tseng Y; Ho Y; Kao S; Su C
    IEEE Trans Biomed Circuits Syst; 2012 Oct; 6(5):508-16. PubMed ID: 23853237
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Integrated Implantable Stimulator That is Fail-Safe Without Off-Chip Blocking-Capacitors.
    Xiao Liu ; Demosthenous A; Donaldson N
    IEEE Trans Biomed Circuits Syst; 2008 Sep; 2(3):231-44. PubMed ID: 23852972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrated CMOS amplifier for ENG signal recording.
    Uranga A; Navarro X; Barniol N
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2188-94. PubMed ID: 15605867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.