These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25653096)

  • 1. How a redox-innocent metal promotes the formal reductive elimination of biphenyl using redox-active ligands.
    Ashley DC; Baik MH
    Chemistry; 2015 Mar; 21(11):4308-14. PubMed ID: 25653096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing redox-active ligands for low-barrier radical addition at oxorhenium complexes.
    Lippert CA; Hardcastle KI; Soper JD
    Inorg Chem; 2011 Oct; 50(20):9864-78. PubMed ID: 21744815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Oxidative addition" to a Zirconium(IV) redox-active ligand complex.
    Blackmore KJ; Ziller JW; Heyduk AF
    Inorg Chem; 2005 Aug; 44(16):5559-61. PubMed ID: 16060604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic structures of homoleptic [tris(2,2'-bipyridine)M]n complexes of the early transition metals (M = Sc, Y, Ti, Zr, Hf, V, Nb, Ta; n = 1+, 0, 1-, 2-, 3-): an experimental and density functional theoretical study.
    Bowman AC; England J; Sproules S; Weyhermüller T; Wieghardt K
    Inorg Chem; 2013 Feb; 52(4):2242-56. PubMed ID: 23387926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theory for bioinorganic chemical reactivity of oxometal complexes and analogous oxidants: the exchange and orbital-selection rules.
    Usharani D; Janardanan D; Li C; Shaik S
    Acc Chem Res; 2013 Feb; 46(2):471-82. PubMed ID: 23210564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Group IV imino-semiquinone complexes obtained by oxidative addition of halogens.
    Blackmore KJ; Sly MB; Haneline MR; Ziller JW; Heyduk AF
    Inorg Chem; 2008 Nov; 47(22):10522-32. PubMed ID: 18937444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The semiquinone-ruthenium combination as a remarkably invariant feature in the redox and substitution series [Ru(Q)(n)(acac)(3-n)](m), n = 1-3; m = (-2), -1, 0, +1, (+2); Q = 4,6-Di-tert-butyl-N-phenyl-o-iminobenzoquinone.
    Das D; Das AK; Sarkar B; Mondal TK; Mobin SM; Fiedler J; Zális S; Urbanos FA; Jiménez-Aparicio R; Kaim W; Lahiri GK
    Inorg Chem; 2009 Dec; 48(24):11853-64. PubMed ID: 19928984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bimetallic redox synergy in oxidative palladium catalysis.
    Powers DC; Ritter T
    Acc Chem Res; 2012 Jun; 45(6):840-50. PubMed ID: 22029861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen-oxygen bond formation pathways promoted by ruthenium complexes.
    Romain S; Vigara L; Llobet A
    Acc Chem Res; 2009 Dec; 42(12):1944-53. PubMed ID: 19908829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of redox-active ligand-assisted nitrene-group transfer in a Zr(IV) complex: direct ligand-to-ligand charge transfer preferred.
    Ghosh S; Baik MH
    Chemistry; 2015 Jan; 21(4):1780-9. PubMed ID: 25470137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of group 4 metal amides with new C2-symmetric binaphthyldiamine-based ligands and their use as catalysts for asymmetric hydroamination/cyclization.
    Zi G; Zhang F; Xiang L; Chen Y; Fang W; Song H
    Dalton Trans; 2010 May; 39(17):4048-61. PubMed ID: 20390168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the oxidative relationships of the metal oxo, hydroxo, and hydroperoxide intermediates with manganese(IV) complexes having bridged cyclams: correlation of the physicochemical properties with reactivity.
    Yin G
    Acc Chem Res; 2013 Feb; 46(2):483-92. PubMed ID: 23194251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation state analysis of a four-component redox series [Os(pap)2(Q)]n involving two different non-innocent ligands on a redox-active transition metal.
    Das D; Sarkar B; Mondal TK; Mobin SM; Fiedler J; Kaim W; Lahiri GK
    Inorg Chem; 2011 Aug; 50(15):7090-8. PubMed ID: 21699145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and catalytic activity of group 5 metal amides with chiral biaryldiamine-based ligands.
    Zhang F; Song H; Zi G
    Dalton Trans; 2011 Feb; 40(7):1547-66. PubMed ID: 21218246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox-active ligands facilitate bimetallic O2 homolysis at five-coordinate oxorhenium(V) centers.
    Lippert CA; Arnstein SA; Sherrill CD; Soper JD
    J Am Chem Soc; 2010 Mar; 132(11):3879-92. PubMed ID: 20192214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The remarkable reactivity of high oxidation state ruthenium and osmium polypyridyl complexes.
    Meyer TJ; Huynh MH
    Inorg Chem; 2003 Dec; 42(25):8140-60. PubMed ID: 14658865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C-F and C-H bond activation of fluorobenzenes and fluoropyridines at transition metal centers: how fluorine tips the scales.
    Clot E; Eisenstein O; Jasim N; Macgregor SA; McGrady JE; Perutz RN
    Acc Chem Res; 2011 May; 44(5):333-48. PubMed ID: 21410234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C-C bond-forming reductive elimination from a zirconium(IV) redox-active ligand complex.
    Haneline MR; Heyduk AF
    J Am Chem Soc; 2006 Jul; 128(26):8410-1. PubMed ID: 16802801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-electron redox energetics in ligand-bridged dinuclear molybdenum and tungsten complexes.
    Lord RL; Schultz FA; Baik MH
    Inorg Chem; 2010 May; 49(10):4611-9. PubMed ID: 20405923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lessons from isolable nickel(I) precursor complexes for small molecule activation.
    Yao S; Driess M
    Acc Chem Res; 2012 Feb; 45(2):276-87. PubMed ID: 21875073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.