These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 25653341)

  • 1. Role of dairy in the carbon footprint of US beef.
    Tichenor N
    Proc Natl Acad Sci U S A; 2015 Feb; 112(8):E820-1. PubMed ID: 25653341
    [No Abstract]   [Full Text] [Related]  

  • 2. Phosphorus is a key component of the resource demands for meat, eggs, and dairy production in the United States.
    Metson GS; Smith VH; Cordell DJ; Vaccari DA; Elser JJ; Bennett EM
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):E4906-7. PubMed ID: 25385650
    [No Abstract]   [Full Text] [Related]  

  • 3. Reply to Metson et al.: The importance of phosphorus perturbations.
    Eshel G; Shepon A; Makov T; Milo R
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):E4908. PubMed ID: 25385649
    [No Abstract]   [Full Text] [Related]  

  • 4. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States.
    Eshel G; Shepon A; Makov T; Milo R
    Proc Natl Acad Sci U S A; 2014 Aug; 111(33):11996-2001. PubMed ID: 25049416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of ecosystem services into the carbon footprint of milk of South German dairy farms.
    Robert Kiefer L; Menzel F; Bahrs E
    J Environ Manage; 2015 Apr; 152():11-8. PubMed ID: 25602922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets.
    Cederberg C; Hedenus F; Wirsenius S; Sonesson U
    Animal; 2013 Feb; 7(2):330-40. PubMed ID: 23031741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms.
    O'Brien D; Capper JL; Garnsworthy PC; Grainger C; Shalloo L
    J Dairy Sci; 2014 Mar; 97(3):1835-51. PubMed ID: 24440256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate mitigation by dairy intensification depends on intensive use of spared grassland.
    Styles D; Gonzalez-Mejia A; Moorby J; Foskolos A; Gibbons J
    Glob Chang Biol; 2018 Feb; 24(2):681-693. PubMed ID: 28940511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invited review: Sustainable forage and grain crop production for the US dairy industry.
    Martin NP; Russelle MP; Powell JM; Sniffen CJ; Smith SI; Tricarico JM; Grant RJ
    J Dairy Sci; 2017 Dec; 100(12):9479-9494. PubMed ID: 28987574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the effect of accounting method, IPCC v. LCA, on grass-based and confinement dairy systems' greenhouse gas emissions.
    O'Brien D; Shalloo L; Patton J; Buckley F; Grainger C; Wallace M
    Animal; 2012 Sep; 6(9):1512-27. PubMed ID: 23031525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance and greenhouse gas emissions from an industrial nitrogen removal plant: trade-off between water and air quality?
    Desloover J; De Clippeleir H; Boeckx P; Du Laing G; Colsen J; Verstraete W; Vlaeminck SE
    Commun Agric Appl Biol Sci; 2011; 76(1):159-62. PubMed ID: 21539221
    [No Abstract]   [Full Text] [Related]  

  • 12. Field-Based Estimates of Global Warming Potential in Bioenergy Systems of Hawaii: Crop Choice and Deficit Irrigation.
    Pawlowski MN; Crow SE; Meki MN; Kiniry JR; Taylor AD; Ogoshi R; Youkhana A; Nakahata M
    PLoS One; 2017; 12(1):e0168510. PubMed ID: 28052075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon footprint of Canadian dairy products: calculations and issues.
    Vergé XP; Maxime D; Dyer JA; Desjardins RL; Arcand Y; Vanderzaag A
    J Dairy Sci; 2013 Sep; 96(9):6091-104. PubMed ID: 23831091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greenhouse gas emissions from dairy manure management: a review of field-based studies.
    Owen JJ; Silver WL
    Glob Chang Biol; 2015 Feb; 21(2):550-65. PubMed ID: 25044806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Greenhouse gas balance of mountain dairy farms as affected by grassland carbon sequestration.
    Salvador S; Corazzin M; Romanzin A; Bovolenta S
    J Environ Manage; 2017 Jul; 196():644-650. PubMed ID: 28365549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Carbon Navigator: a decision support tool to reduce greenhouse gas emissions from livestock production systems.
    Murphy P; Crosson P; O'Brien D; Schulte RP
    Animal; 2013 Jun; 7 Suppl 2():427-36. PubMed ID: 23739484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon footprint of organic beef meat from farm to fork: a case study of short supply chain.
    Vitali A; Grossi G; Martino G; Bernabucci U; Nardone A; Lacetera N
    J Sci Food Agric; 2018 Nov; 98(14):5518-5524. PubMed ID: 29691877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon footprint and ammonia emissions of California beef production systems.
    Stackhouse-Lawson KR; Rotz CA; Oltjen JW; Mitloehner FM
    J Anim Sci; 2012 Dec; 90(12):4641-55. PubMed ID: 22952361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of biochar enriched with dairy manure effluent on carbon and nitrogen dynamics.
    Sarkhot DV; Berhe AA; Ghezzehei TA
    J Environ Qual; 2012; 41(4):1107-14. PubMed ID: 22751052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soil greenhouse gas emissions affected by irrigation, tillage, crop rotation, and nitrogen fertilization.
    Sainju UM; Stevens WB; Caesar-Tonthat T; Liebig MA
    J Environ Qual; 2012; 41(6):1774-86. PubMed ID: 23128735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.