These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 25653460)
1. Flexible regression models over river networks. O'Donnell D; Rushworth A; Bowman AW; Marian Scott E; Hallard M J R Stat Soc Ser C Appl Stat; 2014 Jan; 63(1):47-63. PubMed ID: 25653460 [TBL] [Abstract][Full Text] [Related]
2. Spatially weighted functional clustering of river network data. Haggarty RA; Miller CA; Scott EM J R Stat Soc Ser C Appl Stat; 2015 Apr; 64(3):491-506. PubMed ID: 25926710 [TBL] [Abstract][Full Text] [Related]
3. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
4. Regression B-spline smoothing in Bayesian disease mapping: with an application to patient safety surveillance. MacNab YC; Gustafson P Stat Med; 2007 Oct; 26(24):4455-74. PubMed ID: 17357989 [TBL] [Abstract][Full Text] [Related]
5. A time-causal and time-recursive scale-covariant scale-space representation of temporal signals and past time. Lindeberg T Biol Cybern; 2023 Apr; 117(1-2):21-59. PubMed ID: 36689001 [TBL] [Abstract][Full Text] [Related]
6. Multidimensional adaptive P-splines with application to neurons' activity studies. Rodríguez-Álvarez MX; Durbán M; Eilers PHC; Lee DJ; Gonzalez F Biometrics; 2023 Sep; 79(3):1972-1985. PubMed ID: 36062852 [TBL] [Abstract][Full Text] [Related]
7. Mortality and Morbidity Effects of Long-Term Exposure to Low-Level PM Brunekreef B; Strak M; Chen J; Andersen ZJ; Atkinson R; Bauwelinck M; Bellander T; Boutron MC; Brandt J; Carey I; Cesaroni G; Forastiere F; Fecht D; Gulliver J; Hertel O; Hoffmann B; de Hoogh K; Houthuijs D; Hvidtfeldt U; Janssen N; Jorgensen J; Katsouyanni K; Ketzel M; Klompmaker J; Hjertager Krog N; Liu S; Ljungman P; Mehta A; Nagel G; Oftedal B; Pershagen G; Peters A; Raaschou-Nielsen O; Renzi M; Rodopoulou S; Samoli E; Schwarze P; Sigsgaard T; Stafoggia M; Vienneau D; Weinmayr G; Wolf K; Hoek G Res Rep Health Eff Inst; 2021 Sep; 2021(208):1-127. PubMed ID: 36106702 [TBL] [Abstract][Full Text] [Related]
8. Use of multivariate statistical techniques for the evaluation of temporal and spatial variations in water quality of the Kaduna River, Nigeria. Ogwueleka TC Environ Monit Assess; 2015 Mar; 187(3):137. PubMed ID: 25707603 [TBL] [Abstract][Full Text] [Related]
9. Controlling for seasonal patterns and time varying confounders in time-series epidemiological models: a simulation study. Perrakis K; Gryparis A; Schwartz J; Le Tertre A; Katsouyanni K; Forastiere F; Stafoggia M; Samoli E Stat Med; 2014 Dec; 33(28):4904-18. PubMed ID: 25052462 [TBL] [Abstract][Full Text] [Related]
10. Structured additive regression for categorical space-time data: a mixed model approach. Kneib T; Fahrmeir L Biometrics; 2006 Mar; 62(1):109-18. PubMed ID: 16542236 [TBL] [Abstract][Full Text] [Related]
11. The influence of improved air quality on mortality risks in Erfurt, Germany. Peters A; Breitner S; Cyrys J; Stölzel M; Pitz M; Wölke G; Heinrich J; Kreyling W; Küchenhoff H; Wichmann HE Res Rep Health Eff Inst; 2009 Feb; (137):5-77; discussion 79-90. PubMed ID: 19554968 [TBL] [Abstract][Full Text] [Related]
12. Nitrate concentrations in river waters of the upper Thames and its tributaries. Neal C; Jarvie HP; Neal M; Hill L; Wickham H Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496 [TBL] [Abstract][Full Text] [Related]
13. Monitoring spatial and temporal variation of dissolved oxygen and water temperature in the Savannah River using a sensor network. Post CJ; Cope MP; Gerard PD; Masto NM; Vine JR; Stiglitz RY; Hallstrom JO; Newman JC; Mikhailova EA Environ Monit Assess; 2018 Apr; 190(5):272. PubMed ID: 29637320 [TBL] [Abstract][Full Text] [Related]
14. Estimation of daily dissolved oxygen concentration for river water quality using conventional regression analysis, multivariate adaptive regression splines, and TreeNet techniques. Nacar S; Mete B; Bayram A Environ Monit Assess; 2020 Nov; 192(12):752. PubMed ID: 33159587 [TBL] [Abstract][Full Text] [Related]
15. Comparing Smoothing Techniques for Fitting the Nonlinear Effect of Covariate in Cox Models. Roshani D; Ghaderi E Acta Inform Med; 2016 Feb; 24(1):38-41. PubMed ID: 27041809 [TBL] [Abstract][Full Text] [Related]
16. Efficient and automatic methods for flexible regression on spatiotemporal data, with applications to groundwater monitoring. Evers L; Molinari DA; Bowman AW; Jones WR; Spence MJ Environmetrics; 2015 Sep; 26(6):431-441. PubMed ID: 26900339 [TBL] [Abstract][Full Text] [Related]
17. Spatial prediction of water quality variables along a main river channel, in presence of pollution hotspots. Rizo-Decelis LD; Pardo-Igúzquiza E; Andreo B Sci Total Environ; 2017 Dec; 605-606():276-290. PubMed ID: 28668739 [TBL] [Abstract][Full Text] [Related]
18. Multivariate spatial nonparametric modelling via kernel processes mixing. Fuentes M; Reich B Stat Sin; 2013 Jan; 23(1):. PubMed ID: 24347994 [TBL] [Abstract][Full Text] [Related]
19. Statistical modelling of groundwater contamination monitoring data: A comparison of spatial and spatiotemporal methods. McLean MI; Evers L; Bowman AW; Bonte M; Jones WR Sci Total Environ; 2019 Feb; 652():1339-1346. PubMed ID: 30586819 [TBL] [Abstract][Full Text] [Related]
20. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements. Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]