These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 2565363)
21. Laboratory and field evaluation of Bacillus thuringiensis and B. sphaericus against mosquito larvae. Baruah I; Das SC J Commun Dis; 1994 Jun; 26(2):82-7. PubMed ID: 7989680 [TBL] [Abstract][Full Text] [Related]
22. Laboratory and field evaluation of Teknar HP-D, a biolarvicidal formulation of Bacillus thuringiensis ssp. israelensis, against mosquito vectors. Gunasekaran K; Doss PS; Vaidyanathan K Acta Trop; 2004 Oct; 92(2):109-18. PubMed ID: 15350862 [TBL] [Abstract][Full Text] [Related]
23. Control of Aedes taeniorhynchus and Culex quinquefasciatus emergence with sustained release Altosid sand granules and pellets in saltwater and freshwater test plots. Floore TG; Rathburn CB; Dukes JC; Clements BW; Boike AH J Am Mosq Control Assoc; 1991 Sep; 7(3):405-8. PubMed ID: 1791449 [TBL] [Abstract][Full Text] [Related]
24. Efficacy studies of Aquaprene (1.8% and 2.8% AI) sand granules and Altosid XR-G (1.5% AI) sand granules against first and second instars of Ochlerotatus taeniorhynchus as a preflood treatment in small field plots. Floore TG; Petersen JL; Shaffer KR J Am Mosq Control Assoc; 2007 Jun; 23(2):187-9. PubMed ID: 17847853 [TBL] [Abstract][Full Text] [Related]
25. Simulated field evaluation of the efficacy of two formulations of diflubenzuron, a chitin synthesis inhibitor against larvae of Aedes aegypti (L.) (Diptera: Culicidae) in water-storage containers. Thavara U; Tawatsin A; Chansang C; Asavadachanukorn P; Zaim M; Mulla MS Southeast Asian J Trop Med Public Health; 2007 Mar; 38(2):269-75. PubMed ID: 17539276 [TBL] [Abstract][Full Text] [Related]
26. Comparative larvicidal toxicities of three ecdysone agonists on the mosquitoes Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. Beckage NE; Marion KM; Walton WE; Wirth MC; Tan FF Arch Insect Biochem Physiol; 2004 Nov; 57(3):111-22. PubMed ID: 15484259 [TBL] [Abstract][Full Text] [Related]
27. Pretreatment of floodwater Aedes habitats (dambos) in Kenya with a sustained-release formulation of methoprene. Logan TM; Linthicum KJ; Wagateh JN; Thande PC; Kamau CW; Roberts CR J Am Mosq Control Assoc; 1990 Dec; 6(4):736-8. PubMed ID: 2098486 [TBL] [Abstract][Full Text] [Related]
28. Use of hexaflumuron, an insect growth regulator in the control of Aedes albopictus (Skuse). Montada D; Rajavel AR; Vasuki V Southeast Asian J Trop Med Public Health; 1994 Jun; 25(2):374-7. PubMed ID: 7855660 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of cyfluthrin and fenfluthrin for their insecticidal activity against three vector mosquitoes. Mohapatra R; Ranjit MR; Dash AP J Commun Dis; 1999 Jun; 31(2):91-9. PubMed ID: 10810595 [TBL] [Abstract][Full Text] [Related]
30. Effect of the insect growth regulator methoprene on the ovipositional behavior of Aedes aegypti and Culex quinquefasciatus. Beehler JW; Mulla MS J Am Mosq Control Assoc; 1993 Mar; 9(1):13-6. PubMed ID: 8468569 [TBL] [Abstract][Full Text] [Related]
31. Laboratory bio-assay of temephos and fenthion against some vector species of public health importance. Baruah K J Commun Dis; 2004 Jun; 36(2):100-4. PubMed ID: 16295670 [TBL] [Abstract][Full Text] [Related]
32. Laboratory evaluation of 18 repellent compounds as oviposition deterrents of Aedes albopictus and as larvicides of Aedes aegypti, Anopheles quadrimaculatus, and Culex quinquefasciatus. Xue RD; Barnard DR; Ali A J Am Mosq Control Assoc; 2003 Dec; 19(4):397-403. PubMed ID: 14710743 [TBL] [Abstract][Full Text] [Related]
33. Comparative efficacy of IR3535 and deet as repellents against adult Aedes aegypti and Culex quinquefasciatus. Cilek JE; Petersen JL; Hallmon CE J Am Mosq Control Assoc; 2004 Sep; 20(3):299-304. PubMed ID: 15532931 [TBL] [Abstract][Full Text] [Related]
34. Laboratory evaluation of biotic and abiotic factors that may influence larvicidal activity of Bacillus thuringiensis serovar. israelensis against two Florida mosquito species. Nayar JK; Knight JW; Ali A; Carlson DB; O'Bryan PD J Am Mosq Control Assoc; 1999 Mar; 15(1):32-42. PubMed ID: 10342266 [TBL] [Abstract][Full Text] [Related]
35. Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF. Borovsky D; Meola SM Arch Insect Biochem Physiol; 2004 Mar; 55(3):124-39. PubMed ID: 14981657 [TBL] [Abstract][Full Text] [Related]
36. Mosquito larvicidal activity of aqueous extracts of long pepper (Piper retrofractum vahl) from Thailand. Chansang U; Zahiri NS; Bansiddhi J; Boonruad T; Thongsrirak P; Mingmuang J; Benjapong N; Mulla MS J Vector Ecol; 2005 Dec; 30(2):195-200. PubMed ID: 16599152 [TBL] [Abstract][Full Text] [Related]
37. Differential predation of the planarian Dugesia tigrina on two mosquito species under laboratory conditions. Melo AS; Andrade CF J Am Mosq Control Assoc; 2001 Mar; 17(1):81-3. PubMed ID: 11345426 [TBL] [Abstract][Full Text] [Related]
38. Laboratory and field plot bioassay of Bacillus sphaericus against Arkansas mosquito species. Groves RL; Meisch MV J Am Mosq Control Assoc; 1996 Jun; 12(2 Pt 1):220-4. PubMed ID: 8827596 [TBL] [Abstract][Full Text] [Related]
39. Seasonal mosquito larval abundance and composition in Kibwezi, lower eastern Kenya. Mwangangi JM; Muturi EJ; Mbogo CM J Vector Borne Dis; 2009 Mar; 46(1):65-71. PubMed ID: 19326710 [TBL] [Abstract][Full Text] [Related]
40. [Aedes albopictus (Diptera: Culicidae) in Rome: experimental study of relevant control strategy parameters]. Pombi M; Costantini C; della Torre A Parassitologia; 2003 Jun; 45(2):97-102. PubMed ID: 15267004 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]