These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25653655)

  • 1. Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems.
    Junker A; Muraya MM; Weigelt-Fischer K; Arana-Ceballos F; Klukas C; Melchinger AE; Meyer RC; Riewe D; Altmann T
    Front Plant Sci; 2014; 5():770. PubMed ID: 25653655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses.
    Tschiersch H; Junker A; Meyer RC; Altmann T
    Plant Methods; 2017; 13():54. PubMed ID: 28690669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WinRoots: A High-Throughput Cultivation and Phenotyping System for Plant Phenomics Studies Under Soil Stress.
    Zhang Y; Zhang W; Cao Q; Zheng X; Yang J; Xue T; Sun W; Du X; Wang L; Wang J; Zhao F; Xiang F; Li S
    Front Plant Sci; 2021; 12():794020. PubMed ID: 35154184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic Assay for Drought (RoAD): an automated phenotyping system for brassinosteroid and drought responses.
    Xiang L; Nolan TM; Bao Y; Elmore M; Tuel T; Gai J; Shah D; Wang P; Huser NM; Hurd AM; McLaughlin SA; Howell SH; Walley JW; Yin Y; Tang L
    Plant J; 2021 Sep; 107(6):1837-1853. PubMed ID: 34216161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative monitoring of Arabidopsis thaliana growth and development using high-throughput plant phenotyping.
    Arend D; Lange M; Pape JM; Weigelt-Fischer K; Arana-Ceballos F; Mücke I; Klukas C; Altmann T; Scholz U; Junker A
    Sci Data; 2016 Aug; 3():160055. PubMed ID: 27529152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in
    Awlia M; Nigro A; Fajkus J; Schmoeckel SM; Negrão S; Santelia D; Trtílek M; Tester M; Julkowska MM; Panzarová K
    Front Plant Sci; 2016; 7():1414. PubMed ID: 27733855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CropSight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management.
    Reynolds D; Ball J; Bauer A; Davey R; Griffiths S; Zhou J
    Gigascience; 2019 Mar; 8(3):. PubMed ID: 30715329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Physiological Phenotyping of Drought-Stressed Pepper Plants Treated With "Productivity-Enhancing" and "Survivability-Enhancing" Biostimulants.
    Dalal A; Bourstein R; Haish N; Shenhar I; Wallach R; Moshelion M
    Front Plant Sci; 2019; 10():905. PubMed ID: 31379898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MVS-Pheno: A Portable and Low-Cost Phenotyping Platform for Maize Shoots Using Multiview Stereo 3D Reconstruction.
    Wu S; Wen W; Wang Y; Fan J; Wang C; Gou W; Guo X
    Plant Phenomics; 2020; 2020():1848437. PubMed ID: 33313542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated Analysis Platform: An Open-Source Information System for High-Throughput Plant Phenotyping.
    Klukas C; Chen D; Pape JM
    Plant Physiol; 2014 Jun; 165(2):506-518. PubMed ID: 24760818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenoscope: an automated large-scale phenotyping platform offering high spatial homogeneity.
    Tisné S; Serrand Y; Bach L; Gilbault E; Ben Ameur R; Balasse H; Voisin R; Bouchez D; Durand-Tardif M; Guerche P; Chareyron G; Da Rugna J; Camilleri C; Loudet O
    Plant J; 2013 May; 74(3):534-44. PubMed ID: 23452317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An overview of image-based phenotyping as an adaptive 4.0 technology for studying plant abiotic stress: A bibliometric and literature review.
    Anshori MF; Dirpan A; Sitaresmi T; Rossi R; Farid M; Hairmansis A; Sapta Purwoko B; Suwarno WB; Nugraha Y
    Heliyon; 2023 Nov; 9(11):e21650. PubMed ID: 38027954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Design for Controlled Environment High-Throughput Plant Phenotyping.
    Clarke JL; Qiu Y; Schnable JC
    Methods Mol Biol; 2022; 2539():57-68. PubMed ID: 35895196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field-Based High-Throughput Phenotyping for Maize Plant Using 3D LiDAR Point Cloud Generated With a "Phenomobile".
    Qiu Q; Sun N; Bai H; Wang N; Fan Z; Wang Y; Meng Z; Li B; Cong Y
    Front Plant Sci; 2019; 10():554. PubMed ID: 31134110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maize-IAS: a maize image analysis software using deep learning for high-throughput plant phenotyping.
    Zhou S; Chai X; Yang Z; Wang H; Yang C; Sun T
    Plant Methods; 2021 Apr; 17(1):48. PubMed ID: 33926480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Holistic and component plant phenotyping using temporal image sequence.
    Das Choudhury S; Bashyam S; Qiu Y; Samal A; Awada T
    Plant Methods; 2018; 14():35. PubMed ID: 29760766
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.