These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 2565373)
1. Prenatal ontogenesis of brain phenolamines and catecholamines in relation to their metabolizing enzymes in Roman avoider strains of rats. Coulon JF; Cavoy A; Delacour J; David JC J Neurochem; 1989 May; 52(5):1418-24. PubMed ID: 2565373 [TBL] [Abstract][Full Text] [Related]
2. Effects of aging on p- and m-octopamine, catecholamines, and their metabolizing enzymes in the rat. David JC; Coulon JF; Cavoy A; Delacour J J Neurochem; 1989 Jul; 53(1):149-54. PubMed ID: 2566654 [TBL] [Abstract][Full Text] [Related]
3. Brain contents of phenylethanolamine, m-octopamine and p-octopamine in the Roman strains of rats. David JC; Delacour J Brain Res; 1980 Aug; 195(1):231-5. PubMed ID: 6772269 [No Abstract] [Full Text] [Related]
4. Effects of triethyltin on brain octopamines and their metabolism in the rat. Coulon JF; Lacroix P; Linee P; David JC Eur J Pharmacol; 1987 Mar; 135(1):53-60. PubMed ID: 2883015 [TBL] [Abstract][Full Text] [Related]
5. Prenatal ontogenesis of p-, m-octopamine and phenylethanolamine in relation to catecholamines and their metabolizing enzymes in the developing rat brain and heart. David JC; Cavoy A; Coulon JF; Delacour J Neuroscience; 1984 Aug; 12(4):1271-6. PubMed ID: 6148717 [TBL] [Abstract][Full Text] [Related]
6. Relationship between phenolamines and catecholamines during rat brain embryonic development in vivo and in vitro. David JC J Neurochem; 1984 Sep; 43(3):668-74. PubMed ID: 6146658 [TBL] [Abstract][Full Text] [Related]
7. Brain octopamine and strain differences in avoidance behavior. Delacour J; Coulon JF; David JC; Guenaire C Brain Res; 1983 Dec; 288(1-2):169-76. PubMed ID: 6419983 [TBL] [Abstract][Full Text] [Related]
8. Gene expression of tyrosine hydroxylase in the developing fetal brain. Coulon JF; Biguet NF; Cavoy A; Delacour J; Mallet J; David JC J Neurochem; 1990 Oct; 55(4):1412-7. PubMed ID: 1975836 [TBL] [Abstract][Full Text] [Related]
9. Developmental characteristics of phenylethanolamine and octopamine in the rat brain. Saavedra JM; Coyle JT; Axelrod J J Neurochem; 1974 Sep; 23(3):511-5. PubMed ID: 4153859 [No Abstract] [Full Text] [Related]
10. Age variation in the increase of hypothalamic and brain stem contents of phenylethanolamine m-octopamine and p-octopamine in spontaneously hypertensive rats (SH Kyoto). David JC Experientia; 1979 Nov; 35(11):1483-4. PubMed ID: 389655 [TBL] [Abstract][Full Text] [Related]
11. The release of 3H-noradrenaline by p- and m-tyramines and -octopamines, and the effect of deuterium substitution in alpha-position. Schönfeld CL; Trendelenburg U Naunyn Schmiedebergs Arch Pharmacol; 1989 Apr; 339(4):433-40. PubMed ID: 2500604 [TBL] [Abstract][Full Text] [Related]
12. Oxidation of phenylethanolamine and octopamine by type A and type B monoamine oxidase. Effect of substrate concentration. Suzuki O; Katsumata Y; Oya M; Matsumoto T Biochem Pharmacol; 1979 Aug; 28(15):2327-32. PubMed ID: 387041 [No Abstract] [Full Text] [Related]
13. Two-way avoidance behavior of the roman rat strains following brain lesions. Guenaire C; Delacour J Physiol Behav; 1983 Aug; 31(2):159-66. PubMed ID: 6415685 [TBL] [Abstract][Full Text] [Related]
14. GABAergic and dopaminergic transmission in the brain of Roman high-avoidance and Roman low-avoidance rats. Giorgi O; Orlandi M; Escorihuela RM; Driscoll P; Lecca D; Corda MG Brain Res; 1994 Feb; 638(1-2):133-8. PubMed ID: 8199854 [TBL] [Abstract][Full Text] [Related]
15. Effects of systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to mice on tyrosine hydroxylase, L-3,4-dihydroxyphenylalanine decarboxylase, dopamine beta-hydroxylase, and monoamine oxidase activities in the striatum and hypothalamus. Mogi M; Harada M; Kojima K; Kiuchi K; Nagatsu T J Neurochem; 1988 Apr; 50(4):1053-6. PubMed ID: 2894407 [TBL] [Abstract][Full Text] [Related]
16. Psychophysiological profiles of the Roman strains of rats. Guenaire C; Feghali G; Senault B; Delacour J Physiol Behav; 1986; 37(3):423-8. PubMed ID: 3092252 [TBL] [Abstract][Full Text] [Related]
17. Biochemical aspects of neurotransmission in the developing brain. Coyle JT Int Rev Neurobiol; 1977; 20():65-103. PubMed ID: 22512 [No Abstract] [Full Text] [Related]
18. Density of acetylcholine esterase (AchE) and tyrosine hydroxylase (TH) containing fibers in the amygdala of roman high- and low-avoidance rats. Yilmazer-Hanke D; Eliava M; Hanke J; Schwegler H; Asan E Neurosci Lett; 2016 Oct; 632():114-8. PubMed ID: 27585749 [TBL] [Abstract][Full Text] [Related]
19. The effect of prolonged vasopressin administration on the level and metabolism of catecholamines in the rat brain and kidneys. Szmigielska H Acta Physiol Pol; 1976; 27(3):259-64. PubMed ID: 7918 [TBL] [Abstract][Full Text] [Related]
20. Volumetric brain differences between the Roman rat strains: Neonatal handling effects, sensorimotor gating and working memory. Río-Álamos C; Piludu MA; Gerbolés C; Barroso D; Oliveras I; Sánchez-González A; Cañete T; Tapias-Espinosa C; Sampedro-Viana D; Torrubia R; Tobeña A; Fernández-Teruel A Behav Brain Res; 2019 Apr; 361():74-85. PubMed ID: 30576720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]