BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 2565388)

  • 1. Regulation of Ca++ influx into striatal neurons by kainic acid.
    Murphy SN; Miller RJ
    J Pharmacol Exp Ther; 1989 Apr; 249(1):184-93. PubMed ID: 2565388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute- and long-term glutamate-mediated regulation of [Ca++]i in rat hippocampal pyramidal neurons in vitro.
    Glaum SR; Scholz WK; Miller RJ
    J Pharmacol Exp Ther; 1990 Jun; 253(3):1293-302. PubMed ID: 1972753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loperamide blocks high-voltage-activated calcium channels and N-methyl-D-aspartate-evoked responses in rat and mouse cultured hippocampal pyramidal neurons.
    Church J; Fletcher EJ; Abdel-Hamid K; MacDonald JF
    Mol Pharmacol; 1994 Apr; 45(4):747-57. PubMed ID: 8183255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the inhibition of excitatory amino acid-induced neurotransmitter release in the rat striatum by phencyclidine-like drugs.
    Snell LD; Johnson KM
    J Pharmacol Exp Ther; 1986 Sep; 238(3):938-46. PubMed ID: 2875174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury (Hg 2+) enhances the depressant effect of kainate on Ca-inactivated potassium current in telencephalic cells derived from chick embryos.
    Dyatlov VA; Platoshin AV; Lawrence DA; Carpenter DO
    Toxicol Appl Pharmacol; 1996 Jun; 138(2):285-97. PubMed ID: 8658530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAA receptors and niflumic acid-sensitive chloride channels.
    Babot Z; Cristòfol R; Suñol C
    Eur J Neurosci; 2005 Jan; 21(1):103-12. PubMed ID: 15654847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+ channel-mediated Ca2+ entry leads to glutamate secretion in mouse neocortical preplate.
    Platel JC; Boisseau S; Dupuis A; Brocard J; Poupard A; Savasta M; Villaz M; Albrieux M
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19174-9. PubMed ID: 16357207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of excitatory amino acids on intracellular calcium in single mouse striatal neurons in vitro.
    Murphy SN; Thayer SA; Miller RJ
    J Neurosci; 1987 Dec; 7(12):4145-58. PubMed ID: 3320284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of calcium entry and glutamate release in cultured cerebellar granule cells by palytoxin.
    Vale C; Alfonso A; Suñol C; Vieytes MR; Botana LM
    J Neurosci Res; 2006 Jun; 83(8):1393-406. PubMed ID: 16547972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated extracellular K(+) concentrations inhibit N-methyl-D-aspartate-induced Ca(2+) influx and excitotoxicity.
    Kiedrowski L
    Mol Pharmacol; 1999 Oct; 56(4):737-43. PubMed ID: 10496956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones.
    MacDermott AB; Mayer ML; Westbrook GL; Smith SJ; Barker JL
    Nature; 1986 May 29-Jun 4; 321(6069):519-22. PubMed ID: 3012362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Susceptibilities to and mechanisms of excitotoxic cell death of adult mouse inner retinal neurons in dissociated culture.
    Luo X; Baba A; Matsuda T; Romano C
    Invest Ophthalmol Vis Sci; 2004 Dec; 45(12):4576-82. PubMed ID: 15557470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death.
    Manev H; Favaron M; Guidotti A; Costa E
    Mol Pharmacol; 1989 Jul; 36(1):106-12. PubMed ID: 2568579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRF-induced calcium signaling in guinea pig small intestine myenteric neurons involves CRF-1 receptors and activation of voltage-sensitive calcium channels.
    Bisschops R; Vanden Berghe P; Sarnelli G; Janssens J; Tack J
    Am J Physiol Gastrointest Liver Physiol; 2006 Jun; 290(6):G1252-60. PubMed ID: 16384874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium channels involved in K+- and veratridine-induced increase of cytosolic calcium concentration in human cerebral cortical synaptosomes.
    Meder W; Fink K; Zentner J; Göthert M
    J Pharmacol Exp Ther; 1999 Sep; 290(3):1126-31. PubMed ID: 10454486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ryanodine receptor activation on neurotransmitter release and neuronal cell death following kainic acid-induced status epilepticus.
    Mori F; Okada M; Tomiyama M; Kaneko S; Wakabayashi K
    Epilepsy Res; 2005 Jun; 65(1-2):59-70. PubMed ID: 15979854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective inhibition of excitatory amino acids by divalent cations. A novel means for distinguishing N-methyl-D-aspartic acid-, kainate- and quisqualate-mediated actions in the mouse spinal cord.
    Hornfeldt CS; Larson AA
    J Pharmacol Exp Ther; 1989 Dec; 251(3):1064-8. PubMed ID: 2574739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kynurenic acid and quinolinic acid act at N-methyl-D-aspartate receptors in the rat hippocampus.
    Ganong AH; Cotman CW
    J Pharmacol Exp Ther; 1986 Jan; 236(1):293-9. PubMed ID: 2867215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium and voltage dependent inactivation of sodium and calcium currents limits calcium influx in Helisoma neurons.
    Torreano PJ; Cohan CS
    J Neurobiol; 2003 Feb; 54(3):439-56. PubMed ID: 12532396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kainic acid evoked release of D-[3H]aspartate from rat striatum in vitro: characterization and pharmacological modulation.
    Notman H; Whitney R; Jhamandas K
    Can J Physiol Pharmacol; 1984 Sep; 62(9):1070-7. PubMed ID: 6498619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.