These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 25654117)

  • 21. Voltage-gated K(+) channels contributing to temporal precision at the inner hair cell-auditory afferent nerve fiber synapses in the mammalian cochlea.
    Oak MH; Yi E
    Arch Pharm Res; 2014 Jul; 37(7):821-33. PubMed ID: 24925343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative analysis linking inner hair cell voltage changes and postsynaptic conductance change: a modelling study.
    Prokopiou AN; Drakakis EM
    Biomed Res Int; 2015; 2015():626971. PubMed ID: 25654117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synaptic organization in cochlear inner hair cells deficient for the CaV1.3 (alpha1D) subunit of L-type Ca2+ channels.
    Nemzou N RM; Bulankina AV; Khimich D; Giese A; Moser T
    Neuroscience; 2006 Sep; 141(4):1849-60. PubMed ID: 16828974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reciprocal synapses between inner hair cell spines and afferent dendrites in the organ of corti of the mouse.
    Sobkowicz HM; Slapnick SM; August BK
    Synapse; 2003 Oct; 50(1):53-66. PubMed ID: 12872294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms underlying the temporal precision of sound coding at the inner hair cell ribbon synapse.
    Moser T; Neef A; Khimich D
    J Physiol; 2006 Oct; 576(Pt 1):55-62. PubMed ID: 16901948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hair cell synaptic ribbons are essential for synchronous auditory signalling.
    Khimich D; Nouvian R; Pujol R; Tom Dieck S; Egner A; Gundelfinger ED; Moser T
    Nature; 2005 Apr; 434(7035):889-94. PubMed ID: 15829963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ca2+-independent activation of BKCa channels at negative potentials in mammalian inner hair cells.
    Thurm H; Fakler B; Oliver D
    J Physiol; 2005 Nov; 569(Pt 1):137-51. PubMed ID: 16150795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Burst activity and ultrafast activation kinetics of CaV1.3 Ca²⁺ channels support presynaptic activity in adult gerbil hair cell ribbon synapses.
    Zampini V; Johnson SL; Franz C; Knipper M; Holley MC; Magistretti J; Masetto S; Marcotti W
    J Physiol; 2013 Aug; 591(16):3811-20. PubMed ID: 23713031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A frequency-selective feedback model of auditory efferent suppression and its implications for the recognition of speech in noise.
    Clark NR; Brown GJ; Jürgens T; Meddis R
    J Acoust Soc Am; 2012 Sep; 132(3):1535-41. PubMed ID: 22978882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The auditory hair cell ribbon synapse: from assembly to function.
    Safieddine S; El-Amraoui A; Petit C
    Annu Rev Neurosci; 2012; 35():509-28. PubMed ID: 22715884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanodomain coupling between Ca²⁺ channels and sensors of exocytosis at fast mammalian synapses.
    Eggermann E; Bucurenciu I; Goswami SP; Jonas P
    Nat Rev Neurosci; 2011 Dec; 13(1):7-21. PubMed ID: 22183436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sharp Ca²⁺ nanodomains beneath the ribbon promote highly synchronous multivesicular release at hair cell synapses.
    Graydon CW; Cho S; Li GL; Kachar B; von Gersdorff H
    J Neurosci; 2011 Nov; 31(46):16637-50. PubMed ID: 22090491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synaptic ribbons: machines for priming vesicle release?
    Pelassa I; Lagnado L
    Curr Biol; 2011 Oct; 21(19):R819-21. PubMed ID: 21996507
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Voltage-gated calcium channels.
    Catterall WA
    Cold Spring Harb Perspect Biol; 2011 Aug; 3(8):a003947. PubMed ID: 21746798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calcium cooperativity of exocytosis as a measure of Ca²+ channel domain overlap.
    Matveev V; Bertram R; Sherman A
    Brain Res; 2011 Jun; 1398():126-38. PubMed ID: 21621748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complex primary afferents: What the distribution of electrophysiologically-relevant phenotypes within the spiral ganglion tells us about peripheral neural coding.
    Davis RL; Liu Q
    Hear Res; 2011 Jun; 276(1-2):34-43. PubMed ID: 21276843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A computer model of auditory efferent suppression: implications for the recognition of speech in noise.
    Brown GJ; Ferry RT; Meddis R
    J Acoust Soc Am; 2010 Feb; 127(2):943-54. PubMed ID: 20136217
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.