BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 25654564)

  • 1. Rational design of high-surface-area carbon nanotube/microporous carbon core-shell nanocomposites for supercapacitor electrodes.
    Yao Y; Ma C; Wang J; Qiao W; Ling L; Long D
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4817-25. PubMed ID: 25654564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of Hierarchically One-Dimensional Core-Shell CNT@Microporous Carbon by Covalent Bond-Induced Surface-Confined Cross-Linking for High-Performance Supercapacitor.
    Li Z; Li Z; Li L; Li C; Zhong W; Zhang H
    ACS Appl Mater Interfaces; 2017 May; 9(18):15557-15565. PubMed ID: 28406286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A versatile cooperative template-directed coating method to construct uniform microporous carbon shells for multifunctional core-shell nanocomposites.
    Guan B; Wang X; Xiao Y; Liu Y; Huo Q
    Nanoscale; 2013 Mar; 5(6):2469-75. PubMed ID: 23412686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube balls and their application in supercapacitors.
    Kang DY; Moon JH
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):706-11. PubMed ID: 24364368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical microporous/mesoporous carbon nanosheets for high-performance supercapacitors.
    Fuertes AB; Sevilla M
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4344-53. PubMed ID: 25675347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon Nanotube@N-Doped Mesoporous Carbon Composite Material for Supercapacitor Electrodes.
    Fu X; Chen A; Yu Y; Hou S; Liu L
    Chem Asian J; 2019 Mar; 14(5):634-639. PubMed ID: 30614651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-double-shell, carbon nanotube@polypyrrole@MnO₂ sponge as freestanding, compressible supercapacitor electrode.
    Li P; Yang Y; Shi E; Shen Q; Shang Y; Wu S; Wei J; Wang K; Zhu H; Yuan Q; Cao A; Wu D
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5228-34. PubMed ID: 24621200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-Doped yolk-shell carbon nanotube composite for enhanced electrochemical performance in a supercapacitor.
    Du J; Liu L; Wu H; Chen A
    Nanoscale; 2019 Dec; 11(47):22796-22803. PubMed ID: 31748771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-specific carbon deposition for hierarchically ordered core/shell-structured graphitic carbon with remarkable electrochemical performance.
    Lv Y; Wu Z; Qian X; Fang Y; Feng D; Xia Y; Tu B; Zhao D
    ChemSusChem; 2013 Oct; 6(10):1938-44. PubMed ID: 24039038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchically designed three-dimensional macro/mesoporous carbon frameworks for advanced electrochemical capacitance storage.
    Yang Y; Li P; Wu S; Li X; Shi E; Shen Q; Wu D; Xu W; Cao A; Yuan Q
    Chemistry; 2015 Apr; 21(16):6157-64. PubMed ID: 25752493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directly-Grown Hierarchical Carbon Nanotube@Polypyrrole Core-Shell Hybrid for High-Performance Flexible Supercapacitors.
    Yesi Y; Shown I; Ganguly A; Ngo TT; Chen LC; Chen KH
    ChemSusChem; 2016 Feb; 9(4):370-8. PubMed ID: 26791424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile fabrication of novel highly microporous carbons with superior size-selective adsorption and supercapacitance properties.
    Li Z; Wu D; Liang Y; Xu F; Fu R
    Nanoscale; 2013 Nov; 5(22):10824-8. PubMed ID: 24077461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactive effects of pore size control and carbonization temperatures on supercapacitive behaviors of porous carbon/carbon nanotube composites.
    Kim JI; Rhee KY; Park SJ
    J Colloid Interface Sci; 2012 Jul; 377(1):307-12. PubMed ID: 22494688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Nanotube Template-Assisted Synthesis of Conjugated Microporous Polytriphenylamine with High Porosity for Efficient Supercapacitive Energy Storage.
    Zuo H; Duan J; Lyu B; Lyu W; Li Y; Mei X; Liao Y
    Macromol Rapid Commun; 2024 Jan; 45(1):e2300238. PubMed ID: 37335809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of carbon shell structure on electrochemical performance of multi-walled carbon nanotube electrodes.
    Kim KS; Park SJ
    Anal Chim Acta; 2013 Jul; 788():17-23. PubMed ID: 23845476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores.
    Kim T; Jung G; Yoo S; Suh KS; Ruoff RS
    ACS Nano; 2013 Aug; 7(8):6899-905. PubMed ID: 23829569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring meso-/microporous composite molecular sieves with core-shell structures.
    Qian XF; Li B; Hu YY; Niu GX; Zhang DY; Che RC; Tang Y; Su DS; Asiri AM; Zhao DY
    Chemistry; 2012 Jan; 18(3):931-9. PubMed ID: 22170697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of N-Doped Hollow-Structured Mesoporous Carbon Nanospheres for High-Performance Supercapacitors.
    Liu C; Wang J; Li J; Zeng M; Luo R; Shen J; Sun X; Han W; Wang L
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7194-204. PubMed ID: 26942712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@MnO2 perfect core-shell nanostructures for high-performance flexible supercapacitors.
    Zhou J; Zhao H; Mu X; Chen J; Zhang P; Wang Y; He Y; Zhang Z; Pan X; Xie E
    Nanoscale; 2015 Sep; 7(35):14697-706. PubMed ID: 26280064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen-Doped Carbon Nanotube Spherical Particles for Supercapacitor Applications: Emulsion-Assisted Compact Packing and Capacitance Enhancement.
    Gueon D; Moon JH
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20083-9. PubMed ID: 26325508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.