These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 25654747)
41. N,N'-methylenebis(acrylamide)-crosslinked poly(acrylic acid) particles as doxorubicin carriers: A comparison between release behavior of physically loaded drug and conjugated drug via acid-labile hydrazone linkage. Modarresi-Saryazdi SM; Haddadi-Asl V; Salami-Kalajahi M J Biomed Mater Res A; 2018 Feb; 106(2):342-348. PubMed ID: 28921847 [TBL] [Abstract][Full Text] [Related]
42. Swelling behavior and morphological properties of semi-IPN hydrogels based on ionic and non-ionic components. Pulat M; Ozgündüz Hİ Biomed Mater Eng; 2014; 24(4):1725-33. PubMed ID: 24948456 [TBL] [Abstract][Full Text] [Related]
44. Cross-linked pH-sensitive pectin and acrylic acid based hydrogels for controlled delivery of metformin. Ali L; Ahmad M; Aamir MN; Minhas MU; Shah HH; Shah MA Pak J Pharm Sci; 2020 Jul; 33(4):1483-1491. PubMed ID: 33583778 [TBL] [Abstract][Full Text] [Related]
45. Biodegradable, pH-responsive carboxymethyl cellulose/poly(acrylic acid) hydrogels for oral insulin delivery. Gao X; Cao Y; Song X; Zhang Z; Zhuang X; He C; Chen X Macromol Biosci; 2014 Apr; 14(4):565-75. PubMed ID: 24357554 [TBL] [Abstract][Full Text] [Related]
46. Xylan-based temperature/pH sensitive hydrogels for drug controlled release. Gao C; Ren J; Zhao C; Kong W; Dai Q; Chen Q; Liu C; Sun R Carbohydr Polym; 2016 Oct; 151():189-197. PubMed ID: 27474557 [TBL] [Abstract][Full Text] [Related]
47. Chitosan cross-linked poly(acrylic acid) hydrogels: Drug release control and mechanism. Wang Y; Wang J; Yuan Z; Han H; Li T; Li L; Guo X Colloids Surf B Biointerfaces; 2017 Apr; 152():252-259. PubMed ID: 28119220 [TBL] [Abstract][Full Text] [Related]
48. Biocompatibility and intradiscal application of a thermoreversible celecoxib-loaded poly-N-isopropylacrylamide MgFe-layered double hydroxide hydrogel in a canine model. Willems N; Yang HY; Langelaan ML; Tellegen AR; Grinwis GC; Kranenburg HJ; Riemers FM; Plomp SG; Craenmehr EG; Dhert WJ; Papen-Botterhuis NE; Meij BP; Creemers LB; Tryfonidou MA Arthritis Res Ther; 2015 Aug; 17(1):214. PubMed ID: 26290179 [TBL] [Abstract][Full Text] [Related]
49. Characterization of dextrin-based hydrogels: rheology, biocompatibility, and degradation. Carvalho J; Moreira S; Maia J; Gama FM J Biomed Mater Res A; 2010 Apr; 93(1):389-99. PubMed ID: 19569221 [TBL] [Abstract][Full Text] [Related]
50. Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery. Singh B; Sharma V Carbohydr Polym; 2014 Jan; 101():928-40. PubMed ID: 24299858 [TBL] [Abstract][Full Text] [Related]
51. Synthesis and characterization of a pH/temperature-dual responsive hydrogel with promising biocompatibility features for stimuli-responsive 5-FU delivery. Suryavanshi P; Mahajan S; Banerjee SK; Seth K; Banerjee S J Mater Chem B; 2024 May; 12(21):5098-5110. PubMed ID: 38700289 [TBL] [Abstract][Full Text] [Related]
52. Evaluation of Gentamicin and Lidocaine Release Profile from Gum Acacia-crosslinked-poly(2-hydroxyethylmethacrylate)-carbopol Based Hydrogels. Singh B; Dhiman A Curr Drug Deliv; 2017; 14(7):981-991. PubMed ID: 28137241 [TBL] [Abstract][Full Text] [Related]
53. Temperature, pH and redox responsive cellulose based hydrogels for protein delivery. Dutta S; Samanta P; Dhara D Int J Biol Macromol; 2016 Jun; 87():92-100. PubMed ID: 26896728 [TBL] [Abstract][Full Text] [Related]
54. Novel hydrogel obtained by chitosan and dextrin-VA co-polymerization. Ramos R; Carvalho V; Gama M Biotechnol Lett; 2006 Aug; 28(16):1279-84. PubMed ID: 16802098 [TBL] [Abstract][Full Text] [Related]
55. Wound pH-responsive sustained release of therapeutics from a poly(NIPAAm-co-AAc) hydrogel. Banerjee I; Mishra D; Das T; Maiti TK J Biomater Sci Polym Ed; 2012; 23(1-4):111-32. PubMed ID: 22133349 [TBL] [Abstract][Full Text] [Related]
56. Biodegradable pH/temperature-sensitive oligo(β-amino ester urethane) hydrogels for controlled release of doxorubicin. Huynh CT; Nguyen MK; Lee DS Acta Biomater; 2011 Aug; 7(8):3123-30. PubMed ID: 21601018 [TBL] [Abstract][Full Text] [Related]
57. pH-and thermo-sensitive pluronic/poly(acrylic acid) in situ hydrogels for sustained release of an anticancer drug. Lo YL; Hsu CY; Lin HR J Drug Target; 2013 Jan; 21(1):54-66. PubMed ID: 23009351 [TBL] [Abstract][Full Text] [Related]
58. Influence of graphene-oxide nanosheets impregnation on properties of sterculia gum-polyacrylamide hydrogel formed by radiation induced polymerization. Singh B; Singh B Int J Biol Macromol; 2017 Jun; 99():699-712. PubMed ID: 28284934 [TBL] [Abstract][Full Text] [Related]
59. Regulating drug release from pH- and temperature-responsive electrospun CTS-g-PNIPAAm/poly(ethylene oxide) hydrogel nanofibers. Yuan H; Li B; Liang K; Lou X; Zhang Y Biomed Mater; 2014 Aug; 9(5):055001. PubMed ID: 25135109 [TBL] [Abstract][Full Text] [Related]
60. Dual pH and temperature responsive hydrogels based on β-cyclodextrin derivatives for atorvastatin delivery. Yang K; Wan S; Chen B; Gao W; Chen J; Liu M; He B; Wu H Carbohydr Polym; 2016 Jan; 136():300-6. PubMed ID: 26572359 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]