BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 25655238)

  • 1. A simple and highly sensitive fluorescence assay for microRNAs.
    Shen W; Yeo KH; Gao Z
    Analyst; 2015 Mar; 140(6):1932-8. PubMed ID: 25655238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly sensitive and selective homogenous assay for profiling microRNA expression.
    Deng H; Shen W; Ren Y; Gao Z
    Biosens Bioelectron; 2014 Apr; 54():650-5. PubMed ID: 24333938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A target-triggered dual amplification strategy for sensitive detection of microRNA.
    Lv W; Zhao J; Situ B; Li B; Ma W; Liu J; Wu Z; Wang W; Yan X; Zheng L
    Biosens Bioelectron; 2016 Sep; 83():250-5. PubMed ID: 27131998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive detection of microRNA in complex biological samples by using two stages DSN-assisted target recycling signal amplification method.
    Zhang K; Wang K; Zhu X; Xu F; Xie M
    Biosens Bioelectron; 2017 Jan; 87():358-364. PubMed ID: 27589398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple G-quadruplex molecular beacon-based biosensor for highly selective detection of microRNA.
    Zhou H; Yang C; Chen H; Li X; Li Y; Fan X
    Biosens Bioelectron; 2017 Jan; 87():552-557. PubMed ID: 27611474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target-triggered three-way junction structure and polymerase/nicking enzyme synergetic isothermal quadratic DNA machine for highly specific, one-step, and rapid microRNA detection at attomolar level.
    Zhang Q; Chen F; Xu F; Zhao Y; Fan C
    Anal Chem; 2014 Aug; 86(16):8098-105. PubMed ID: 25072308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum dots and duplex-specific nuclease enabled ultrasensitive detection and serotyping of Dengue viruses in one step in a single tube.
    Shen W; Gao Z
    Biosens Bioelectron; 2015 Mar; 65():327-32. PubMed ID: 25461177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorimetric and fluorescent dual-mode detection of microRNA based on duplex-specific nuclease assisted gold nanoparticle amplification.
    Huang J; Shangguan J; Guo Q; Ma W; Wang H; Jia R; Ye Z; He X; Wang K
    Analyst; 2019 Aug; 144(16):4917-4924. PubMed ID: 31313769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A highly sensitive and selective electrochemical biosensor for direct detection of microRNAs in serum.
    Ren Y; Deng H; Shen W; Gao Z
    Anal Chem; 2013 May; 85(9):4784-9. PubMed ID: 23594156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free microRNA detection based on terbium and duplex-specific nuclease assisted target recycling.
    Zhang J; Wu D; Chen Q; Chen M; Xia Y; Cai S; Zhang X; Wu F; Chen J
    Analyst; 2015 Aug; 140(15):5082-9. PubMed ID: 26106867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive and selective microRNA detection based on DNA-bio-bar-code and enzyme-assisted strand cycle exponential signal amplification.
    Dong H; Meng X; Dai W; Cao Y; Lu H; Zhou S; Zhang X
    Anal Chem; 2015 Apr; 87(8):4334-40. PubMed ID: 25830473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetically Assisted Immobilization-Free Detection of microRNAs Based on the Signal Amplification of Duplex-Specific Nuclease.
    Liu G; La M; Wang J; Liu J; Han Y; Liu L
    Biosensors (Basel); 2023 Jun; 13(7):. PubMed ID: 37504098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification.
    Xu H; Zhang Y; Zhang S; Sun M; Li W; Jiang Y; Wu ZS
    Anal Chim Acta; 2019 Jan; 1047():172-178. PubMed ID: 30567647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple and Sensitive Quantification of MicroRNAs via PS@Au Microspheres-Based DNA Probes and DSN-Assisted Signal Amplification Platform.
    Zhao Q; Piao J; Peng W; Wang Y; Zhang B; Gong X; Chang J
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3324-3332. PubMed ID: 29300448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Backbone-modified molecular beacons for highly sensitive and selective detection of microRNAs based on duplex specific nuclease signal amplification.
    Lin X; Zhang C; Huang Y; Zhu Z; Chen X; Yang CJ
    Chem Commun (Camb); 2013 Aug; 49(65):7243-5. PubMed ID: 23842896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasensitive and Multiple Disease-Related MicroRNA Detection Based on Tetrahedral DNA Nanostructures and Duplex-Specific Nuclease-Assisted Signal Amplification.
    Xu F; Dong H; Cao Y; Lu H; Meng X; Dai W; Zhang X; Al-Ghanim KA; Mahboob S
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33499-33505. PubMed ID: 27960393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fe₃O₄@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells.
    Pang Y; Wang C; Wang J; Sun Z; Xiao R; Wang S
    Biosens Bioelectron; 2016 May; 79():574-80. PubMed ID: 26749099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-line lateral flow biosensor for logic detection of microRNA based on Y-shaped junction DNA and target recycling amplification.
    Huang Y; Wang W; Wu T; Xu LP; Wen Y; Zhang X
    Anal Bioanal Chem; 2016 Nov; 408(28):8195-8202. PubMed ID: 27624762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorometric determination of zinc(II) by using DNAzyme-modified magnetic microbeads.
    Shen W; Li Y; Qi T; Wang S; Sun J; Deng H; Lu H; Chen C; Chen L; Tang S
    Mikrochim Acta; 2018 Sep; 185(10):447. PubMed ID: 30187135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-fueled molecular machine enables enzyme-free target recycling amplification for electronic detection of microRNA from cancer cells with highly minimized background noise.
    Shi K; Dou B; Yang C; Chai Y; Yuan R; Xiang Y
    Anal Chem; 2015 Aug; 87(16):8578-83. PubMed ID: 26194786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.