These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 25655632)

  • 1. EOG-based auto-staging: less is more.
    Berthomier C; Brandewinder M
    Sleep Breath; 2015 Sep; 19(3):791-3. PubMed ID: 25655632
    [No Abstract]   [Full Text] [Related]  

  • 2. Electro-oculography-based detection of sleep-wake in sleep apnea patients.
    Virkkala J; Toppila J; Maasilta P; Bachour A
    Sleep Breath; 2015 Sep; 19(3):785-9. PubMed ID: 25269754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of time constant on electrooculographic recording of slow eye movements during the wake-sleep transition.
    Hiroshige Y
    Psychiatry Clin Neurosci; 1998 Apr; 52(2):163-4. PubMed ID: 9628128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear automatic detection of eye movements during the transition between wake and sleep.
    Hiroshige Y
    Psychiatry Clin Neurosci; 1999 Apr; 53(2):179-81. PubMed ID: 10459682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic detection of rapid eye movements by discrete wavelet transform.
    Tsuji Y; Satoh H; Itoh N; Sekiguchi Y; Nagasawa K
    Psychiatry Clin Neurosci; 2000 Jun; 54(3):276-7. PubMed ID: 11186075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Obstructive sleep apnea: A study by simultaneous polysomnography and ultrasonic imaging.
    Siegel H; Sonies BC; Graham B; McCutchen C; Hunter K; Vega-Bermudez F; Sato S
    Neurology; 2000 May; 54(9):1872. PubMed ID: 10802805
    [No Abstract]   [Full Text] [Related]  

  • 7. Automatic sleep stage classification using two-channel electro-oculography.
    Virkkala J; Hasan J; Värri A; Himanen SL; Müller K
    J Neurosci Methods; 2007 Oct; 166(1):109-15. PubMed ID: 17681382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation study of portable device for the diagnosis of obstructive sleep apnea according to the new AASM scoring criteria: Watch-PAT 100.
    Choi JH; Kim EJ; Kim YS; Choi J; Kim TH; Kwon SY; Lee HM; Lee SH; Shin C; Lee SH
    Acta Otolaryngol; 2010 Jul; 130(7):838-43. PubMed ID: 20082567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring peripheral arterial tone (PAT) to diagnose sleep apnea in the home.
    White DP
    J Clin Sleep Med; 2008 Feb; 4(1):73. PubMed ID: 18350969
    [No Abstract]   [Full Text] [Related]  

  • 10. Sleep/wake measurement using a non-contact biomotion sensor.
    De Chazal P; Fox N; O'Hare E; Heneghan C; Zaffaroni A; Boyle P; Smith S; O'Connell C; McNicholas WT
    J Sleep Res; 2011 Jun; 20(2):356-66. PubMed ID: 20704645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability and validity testing of automated scoring in obstructive sleep apnea diagnosis with the Embletta X100.
    Park DY; Kim HJ; Kim CH; Kim YS; Choi JH; Hong SY; Jung JJ; Lee KI; Lee HS
    Laryngoscope; 2015 Feb; 125(2):493-7. PubMed ID: 25124863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of the DynaPort MiniMod during sleep: a pilot study.
    Bossenbroek L; Kosse N; Ten Hacken N; Gordijn M; Van der Hoeven J; De Greef M
    Percept Mot Skills; 2010 Dec; 111(3):936-46. PubMed ID: 21319630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Follow-up assessment of CPAP efficacy in patients with obstructive sleep apnea using an ambulatory device based on peripheral arterial tonometry.
    Pittman SD; Pillar G; Berry RB; Malhotra A; MacDonald MM; White DP
    Sleep Breath; 2006 Sep; 10(3):123-31. PubMed ID: 16586136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-assisted quantitative evaluation of obstructive sleep apnea using digitalized endoscopic imaging with Muller maneuver.
    Ko MT; Su CY
    Laryngoscope; 2008 May; 118(5):909-14. PubMed ID: 18300707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classifying obstructive sleep apnea using smartphones.
    Al-Mardini M; Aloul F; Sagahyroon A; Al-Husseini L
    J Biomed Inform; 2014 Dec; 52():251-9. PubMed ID: 25038556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utility of portable monitoring in the diagnosis of obstructive sleep apnea.
    Krishnaswamy U; Aneja A; Kumar RM; Kumar TP
    J Postgrad Med; 2015; 61(4):223-9. PubMed ID: 26440391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smoothed periodogram of oxyhemoglobin saturation by pulse oximetry in sleep apnea syndrome: an automated analysis.
    Hua CC; Yu CC
    Chest; 2007 Mar; 131(3):750-757. PubMed ID: 17356089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of residual apnea-hypopnea index obtained using the continuous positive airway pressure device: application of new version 2.0 scoring rules for respiratory events during sleep.
    Kim DE; Hwangbo Y; Bae JH; Yang KI
    Sleep Breath; 2015 Dec; 19(4):1335-41. PubMed ID: 26407962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-contact screening system with two microwave radars in the diagnosis of sleep apnea-hypopnea syndrome.
    Kagawa M; Ueki K; Kurita A; Tojima H; Matsui T
    Stud Health Technol Inform; 2013; 192():263-7. PubMed ID: 23920557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Night-day-night sleep-wakefulness monitoring by ambulatory integrated circuit memories.
    Yamamoto M; Nakao M; Katayama N; Waku M; Suzuki K; Irokawa K; Abe M; Ueno T
    Psychiatry Clin Neurosci; 1999 Apr; 53(2):171-3. PubMed ID: 10459680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.