These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 25655770)

  • 1. A potential mechanism for allometric trabecular bone scaling in terrestrial mammals.
    Christen P; Ito K; van Rietbergen B
    J Anat; 2015 Mar; 226(3):236-43. PubMed ID: 25655770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteocyte density and histomorphometric parameters in cancellous bone of the proximal femur in five mammalian species.
    Mullender MG; Huiskes R; Versleyen H; Buma P
    J Orthop Res; 1996 Nov; 14(6):972-9. PubMed ID: 8982141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trabecular bone scales allometrically in mammals and birds.
    Doube M; Klosowski MM; Wiktorowicz-Conroy AM; Hutchinson JR; Shefelbine SJ
    Proc Biol Sci; 2011 Oct; 278(1721):3067-73. PubMed ID: 21389033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Of mice, rats and men: trabecular bone architecture in mammals scales to body mass with negative allometry.
    Barak MM; Lieberman DE; Hublin JJ
    J Struct Biol; 2013 Aug; 183(2):123-31. PubMed ID: 23639903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differing trabecular bone architecture in dinosaurs and mammals contribute to stiffness and limits on bone strain.
    Aguirre TG; Ingrole A; Fuller L; Seek TW; Fiorillo AR; Sertich JJW; Donahue SW
    PLoS One; 2020; 15(8):e0237042. PubMed ID: 32813735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass allometry of the appendicular skeleton in terrestrial mammals.
    Christiansen P
    J Morphol; 2002 Feb; 251(2):195-209. PubMed ID: 11748703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical and empirical scaling patterns and topological homology in bone trabeculae.
    Swartz SM; Parker A; Huo C
    J Exp Biol; 1998 Feb; 201(Pt 4):573-90. PubMed ID: 9438832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential scaling of the long bones in the terrestrial carnivora and other mammals.
    Bertram JE; Biewener AA
    J Morphol; 1990 May; 204(2):157-69. PubMed ID: 2348461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of osteocyte apoptosis on signalling in the osteocyte and bone lining cell network: a computer simulation.
    Jahani M; Genever PG; Patton RJ; Ahwal F; Fagan MJ
    J Biomech; 2012 Nov; 45(16):2876-83. PubMed ID: 23040883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress.
    Adachi T; Kameo Y; Hojo M
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2669-82. PubMed ID: 20439268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histomorphometric study on the osteocyte lacuno-canalicular network in animals of different species. II. Parallel-fibered and lamellar bones.
    Ferretti M; Muglia MA; Remaggi F; Canè V; Palumbo C
    Ital J Anat Embryol; 1999; 104(3):121-31. PubMed ID: 10575824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The turnover of mineralized growth plate cartilage into bone may be regulated by osteocytes.
    Cox LG; van Rietbergen B; van Donkelaar CC; Ito K
    J Biomech; 2011 Jun; 44(9):1765-70. PubMed ID: 21546025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the osteocyte network in the human skeleton.
    Buenzli PR; Sims NA
    Bone; 2015 Jun; 75():144-50. PubMed ID: 25708054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of body mass on microstructural features of the osteochondral unit: A comparative analysis of 37 mammalian species.
    Mancini IAD; Rieppo L; Pouran B; Afara IO; Braganca FMS; van Rijen MHP; Kik M; Weinans H; Toyras J; van Weeren PR; Malda J
    Bone; 2019 Oct; 127():664-673. PubMed ID: 31279095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical framework for strain-related trabecular bone maintenance and adaptation.
    Ruimerman R; Hilbers P; van Rietbergen B; Huiskes R
    J Biomech; 2005 Apr; 38(4):931-41. PubMed ID: 15713314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement, variation, and scaling of osteocyte lacunae: a case study in birds.
    D'Emic MD; Benson RB
    Bone; 2013 Nov; 57(1):300-10. PubMed ID: 23954754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling of the limb long bones to body mass in terrestrial mammals.
    Christiansen P
    J Morphol; 1999 Feb; 239(2):167-90. PubMed ID: 9951716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface remodeling of trabecular bone using a tissue level model.
    Smith TS; Martin RB; Hubbard M; Bay BK
    J Orthop Res; 1997 Jul; 15(4):593-600. PubMed ID: 9379270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small skeletons show size-specific scaling: an exploration of allometry in the mammalian lumbar spine.
    Smith SM; Heaney LR; Angielczyk KD
    Proc Biol Sci; 2024 Apr; 291(2021):20232868. PubMed ID: 38628132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.
    Vaughan TJ; McCarthy CT; McNamara LM
    J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.