BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25655943)

  • 1. Natural Green coating inhibits adhesion of clinically important bacteria.
    Trentin DS; Silva DB; Frasson AP; Rzhepishevska O; da Silva MV; Pulcini Ede L; James G; Soares GV; Tasca T; Ramstedt M; Giordani RB; Lopes NP; Macedo AJ
    Sci Rep; 2015 Feb; 5():8287. PubMed ID: 25655943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cranberry derived proanthocyanidins reduce bacterial adhesion to selected biomaterials.
    Eydelnant IA; Tufenkji N
    Langmuir; 2008 Sep; 24(18):10273-81. PubMed ID: 18698853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial adherence and biofilm formation on medical implants: a review.
    Veerachamy S; Yarlagadda T; Manivasagam G; Yarlagadda PK
    Proc Inst Mech Eng H; 2014 Oct; 228(10):1083-99. PubMed ID: 25406229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial adhesion to glass and metal-oxide surfaces.
    Li B; Logan BE
    Colloids Surf B Biointerfaces; 2004 Jul; 36(2):81-90. PubMed ID: 15261011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adhesion of food-borne bacteria to stainless steel is reduced by food conditioning films.
    Bernbom N; Ng YY; Jørgensen RL; Arpanaei A; Meyer RL; Kingshott P; Vejborg RM; Klemm P; Gram L
    J Appl Microbiol; 2009 Apr; 106(4):1268-79. PubMed ID: 19187146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential mechanisms for the effects of tea extracts on the attachment, biofilm formation and cell size of Streptococcus mutans.
    Wang Y; Lee SM; Dykes GA
    Biofouling; 2013; 29(3):307-18. PubMed ID: 23528127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The inhibition of the adhesion of clinically isolated bacterial strains on multi-component cross-linked poly(ethylene glycol)-based polymer coatings.
    Saldarriaga Fernández IC; van der Mei HC; Lochhead MJ; Grainger DW; Busscher HJ
    Biomaterials; 2007 Oct; 28(28):4105-12. PubMed ID: 17573108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue.
    Jo YK; Seo JH; Choi BH; Kim BJ; Shin HH; Hwang BH; Cha HJ
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20242-53. PubMed ID: 25311392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Inhibition of bacterial adhesion and prevention of biofilm formation: Use of organic self-assembled monolayers on inorganic surfaces].
    Guerrero G; Amalric J; Mutin PH; Sotto A; Lavigne JP
    Pathol Biol (Paris); 2009 Feb; 57(1):36-43. PubMed ID: 18824310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elaboration of antibacterial plastic surfaces by a combination of antiadhesive and biocidal coatings of natural products.
    Paris JB; Seyer D; Jouenne T; Thébault P
    Colloids Surf B Biointerfaces; 2017 Aug; 156():186-193. PubMed ID: 28531875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of antimicrobial peptides and immobilization strategy suitable for a covalent surface coating with biocompatible properties.
    Rapsch K; Bier FF; Tadros M; von Nickisch-Rosenegk M
    Bioconjug Chem; 2014 Feb; 25(2):308-19. PubMed ID: 24372365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of surface modification on bacterial adhesion to titanium-based substrates.
    Lorenzetti M; Dogša I; Stošicki T; Stopar D; Kalin M; Kobe S; Novak S
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1644-51. PubMed ID: 25543452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cranberry extracts on growth and biofilm production of Escherichia coli and Staphylococcus species.
    LaPlante KL; Sarkisian SA; Woodmansee S; Rowley DC; Seeram NP
    Phytother Res; 2012 Sep; 26(9):1371-4. PubMed ID: 22294419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial adhesion and growth on a polymer brush-coating.
    Nejadnik MR; van der Mei HC; Norde W; Busscher HJ
    Biomaterials; 2008 Oct; 29(30):4117-21. PubMed ID: 18674814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the antimicrobial activity of polyisoprene based surfaces.
    Badawy H; Brunellière J; Veryaskina M; Brotons G; Sablé S; Lanneluc I; Lambert K; Marmey P; Milsted A; Cutright T; Nourry A; Mouget JL; Pasetto P
    Int J Mol Sci; 2015 Feb; 16(3):4392-415. PubMed ID: 25706513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negatively Charged Carbon Nanodots with Bacteria Resistance Ability for High-Performance Antibiofilm Formation and Anticorrosion Coating Design.
    Zhu C; Li H; Wang H; Yao B; Huang H; Liu Y; Kang Z
    Small; 2019 Jun; 15(23):e1900007. PubMed ID: 31037841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antiadhesive activity of ulvan polysaccharides covalently immobilized onto titanium surface.
    Gadenne V; Lebrun L; Jouenne T; Thebault P
    Colloids Surf B Biointerfaces; 2013 Dec; 112():229-36. PubMed ID: 23994748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols.
    Bakhshi H; Yeganeh H; Mehdipour-Ataei S; Shokrgozar MA; Yari A; Saeedi-Eslami SN
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):153-64. PubMed ID: 25428057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Special Issue: Antibacterial Materials and Coatings.
    Vasilev K; Cavallaro A; Zilm P
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29509673
    [No Abstract]   [Full Text] [Related]  

  • 20. A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity.
    Howell AB; Reed JD; Krueger CG; Winterbottom R; Cunningham DG; Leahy M
    Phytochemistry; 2005 Sep; 66(18):2281-91. PubMed ID: 16055161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.