These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 25656557)

  • 1. From colloidal spheres to nanofibrils: extensional flow properties of mineral pigment and mixtures with micro and nanofibrils under progressive double layer suppression.
    Dimic-Misic K; Hummel M; Paltakari J; Sixta H; Maloney T; Gane P
    J Colloid Interface Sci; 2015 May; 446():31-43. PubMed ID: 25656557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modifying the flocculation of microfibrillated cellulose suspensions by soluble polysaccharides under conditions unfavorable to adsorption.
    Sorvari A; Saarinen T; Haavisto S; Salmela J; Vuoriluoto M; Seppälä J
    Carbohydr Polym; 2014 Jun; 106():283-92. PubMed ID: 24721080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extensional viscosity of microfibrillated cellulose suspensions.
    Moberg T; Rigdahl M; Stading M; Levenstam Bragd E
    Carbohydr Polym; 2014 Feb; 102():409-12. PubMed ID: 24507298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear and extensional rheology of cellulose/ionic liquid solutions.
    Haward SJ; Sharma V; Butts CP; McKinley GH; Rahatekar SS
    Biomacromolecules; 2012 May; 13(5):1688-99. PubMed ID: 22480203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current Progress in Rheology of Cellulose Nanofibril Suspensions.
    Nechyporchuk O; Belgacem MN; Pignon F
    Biomacromolecules; 2016 Jul; 17(7):2311-20. PubMed ID: 27310523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal ionic assembly between anionic native cellulose nanofibrils and cationic block copolymer micelles into biomimetic nanocomposites.
    Wang M; Olszewska A; Walther A; Malho JM; Schacher FH; Ruokolainen J; Ankerfors M; Laine J; Berglund LA; Osterberg M; Ikkala O
    Biomacromolecules; 2011 Jun; 12(6):2074-81. PubMed ID: 21517114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena.
    Nechyporchuk O; Belgacem MN; Pignon F
    Carbohydr Polym; 2014 Nov; 112():432-9. PubMed ID: 25129764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rheology of aqueous solutions of ethyl hydroxy-ethyl cellulose (EHEC) and its hydrophobically modified analogue (hmEHEC): extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer.
    Sharma V; Haward SJ; Serdy J; Keshavarz B; Soderlund A; Threlfall-Holmes P; McKinley GH
    Soft Matter; 2015 Apr; 11(16):3251-70. PubMed ID: 25782987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cationic nanofibrillar cellulose with high antibacterial properties.
    Chaker A; Boufi S
    Carbohydr Polym; 2015 Oct; 131():224-32. PubMed ID: 26256179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of precipitated calcium carbonate--Cellulose nanofibrils composite filler on paper properties.
    He M; Cho BU; Won JM
    Carbohydr Polym; 2016 Jan; 136():820-5. PubMed ID: 26572417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheology and microstructure of aqueous suspensions of nanocrystalline cellulose rods.
    Xu Y; Atrens AD; Stokes JR
    J Colloid Interface Sci; 2017 Jun; 496():130-140. PubMed ID: 28214623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-mechanics of electrostatically stabilized suspensions of cellulose nanofibrils under steady state shear flow.
    Martoïa F; Dumont PJ; Orgéas L; Belgacem MN; Putaux JL
    Soft Matter; 2016 Feb; 12(6):1721-35. PubMed ID: 26725654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of rheological properties of dissolved cellulose/microfibrillated cellulose blend suspensions on film forming.
    Saarikoski E; Rissanen M; Seppälä J
    Carbohydr Polym; 2015 Mar; 119():62-70. PubMed ID: 25563945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time.
    Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H
    Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheology of nanocrystalline cellulose aqueous suspensions.
    Shafiei-Sabet S; Hamad WY; Hatzikiriakos SG
    Langmuir; 2012 Dec; 28(49):17124-33. PubMed ID: 23146090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods.
    Boluk Y; Zhao L; Incani V
    Langmuir; 2012 Apr; 28(14):6114-23. PubMed ID: 22448630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation.
    Saito T; Kuramae R; Wohlert J; Berglund LA; Isogai A
    Biomacromolecules; 2013 Jan; 14(1):248-53. PubMed ID: 23215584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Dynamics of Cellulose Dissolved in an Ionic Liquid Solvent Under Shear and Extensional Flows.
    Owens CE; Du J; Sánchez PB
    Biomacromolecules; 2022 May; 23(5):1958-1969. PubMed ID: 35442676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils.
    Benítez AJ; Torres-Rendon J; Poutanen M; Walther A
    Biomacromolecules; 2013 Dec; 14(12):4497-506. PubMed ID: 24245557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled Silylation of Nanofibrillated Cellulose in Water: Reinforcement of a Model Polydimethylsiloxane Network.
    Zhang Z; Tingaut P; Rentsch D; Zimmermann T; Sèbe G
    ChemSusChem; 2015 Aug; 8(16):2681-90. PubMed ID: 26202543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.