These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
498 related articles for article (PubMed ID: 25656563)
1. Coupling Freshly Isolated CD44(+) Infrapatellar Fat Pad-Derived Stromal Cells with a TGF-β3 Eluting Cartilage ECM-Derived Scaffold as a Single-Stage Strategy for Promoting Chondrogenesis. Almeida HV; Cunniffe GM; Vinardell T; Buckley CT; O'Brien FJ; Kelly DJ Adv Healthc Mater; 2015 May; 4(7):1043-53. PubMed ID: 25656563 [TBL] [Abstract][Full Text] [Related]
2. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration. Almeida HV; Eswaramoorthy R; Cunniffe GM; Buckley CT; O'Brien FJ; Kelly DJ Acta Biomater; 2016 May; 36():55-62. PubMed ID: 26961807 [TBL] [Abstract][Full Text] [Related]
3. Controlled release of transforming growth factor-β3 from cartilage-extra-cellular-matrix-derived scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells. Almeida HV; Liu Y; Cunniffe GM; Mulhall KJ; Matsiko A; Buckley CT; O'Brien FJ; Kelly DJ Acta Biomater; 2014 Oct; 10(10):4400-9. PubMed ID: 24907658 [TBL] [Abstract][Full Text] [Related]
4. Extracellular matrix enhances differentiation of adipose stem cells from infrapatellar fat pad toward chondrogenesis. He F; Pei M J Tissue Eng Regen Med; 2013 Jan; 7(1):73-84. PubMed ID: 22095700 [TBL] [Abstract][Full Text] [Related]
5. Oxygen tension differentially regulates the functional properties of cartilaginous tissues engineered from infrapatellar fat pad derived MSCs and articular chondrocytes. Buckley CT; Vinardell T; Kelly DJ Osteoarthritis Cartilage; 2010 Oct; 18(10):1345-54. PubMed ID: 20650328 [TBL] [Abstract][Full Text] [Related]
6. Freshly isolated stromal cells from the infrapatellar fat pad are suitable for a one-step surgical procedure to regenerate cartilage tissue. Jurgens WJ; van Dijk A; Doulabi BZ; Niessen FB; Ritt MJ; van Milligen FJ; Helder MN Cytotherapy; 2009; 11(8):1052-64. PubMed ID: 19929469 [TBL] [Abstract][Full Text] [Related]
7. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model. Luo Z; Jiang L; Xu Y; Li H; Xu W; Wu S; Wang Y; Tang Z; Lv Y; Yang L Biomaterials; 2015 Jun; 52():463-75. PubMed ID: 25818452 [TBL] [Abstract][Full Text] [Related]
8. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Cheng NC; Estes BT; Awad HA; Guilak F Tissue Eng Part A; 2009 Feb; 15(2):231-41. PubMed ID: 18950290 [TBL] [Abstract][Full Text] [Related]
9. TGF-β3 encapsulated PLCL scaffold by a supercritical CO2-HFIP co-solvent system for cartilage tissue engineering. Kim SH; Kim SH; Jung Y J Control Release; 2015 May; 206():101-7. PubMed ID: 25804870 [TBL] [Abstract][Full Text] [Related]
10. Stem cells display a donor dependent response to escalating levels of growth factor release from extracellular matrix-derived scaffolds. Almeida HV; Mulhall KJ; O'Brien FJ; Kelly DJ J Tissue Eng Regen Med; 2017 Nov; 11(11):2979-2987. PubMed ID: 27402022 [TBL] [Abstract][Full Text] [Related]
11. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate. Huang Z; Nooeaid P; Kohl B; Roether JA; Schubert DW; Meier C; Boccaccini AR; Godkin O; Ertel W; Arens S; Schulze-Tanzil G Mater Sci Eng C Mater Biol Appl; 2015 May; 50():160-72. PubMed ID: 25746258 [TBL] [Abstract][Full Text] [Related]
12. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo. Han SH; Kim YH; Park MS; Kim IA; Shin JW; Yang WI; Jee KS; Park KD; Ryu GH; Lee JW J Biomed Mater Res A; 2008 Dec; 87(4):850-61. PubMed ID: 18200543 [TBL] [Abstract][Full Text] [Related]
13. [Effect of bone marrow mesenchymal stem cells-derived extracellular matrix scaffold on chondrogenic differentiation of marrow clot after microfracture of bone marrow stimulation in vitro]. Wei B; Jin C; Xu Y; Tang C; Hu W; Wang L Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Apr; 27(4):464-74. PubMed ID: 23757877 [TBL] [Abstract][Full Text] [Related]
14. Glyoxal cross-linking of solubilized extracellular matrix to produce highly porous, elastic, and chondro-permissive scaffolds for orthopedic tissue engineering. Browe DC; Mahon OR; Díaz-Payno PJ; Cassidy N; Dudurych I; Dunne A; Buckley CT; Kelly DJ J Biomed Mater Res A; 2019 Oct; 107(10):2222-2234. PubMed ID: 31116910 [TBL] [Abstract][Full Text] [Related]
15. Feasibility of autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffold for cartilage tissue engineering. Tang C; Xu Y; Jin C; Min BH; Li Z; Pei X; Wang L Artif Organs; 2013 Dec; 37(12):E179-90. PubMed ID: 24251792 [TBL] [Abstract][Full Text] [Related]
16. Silk fibroin/cartilage extracellular matrix scaffolds with sequential delivery of TGF-β3 for chondrogenic differentiation of adipose-derived stem cells. Yang Q; Teng BH; Wang LN; Li K; Xu C; Ma XL; Zhang Y; Kong DL; Wang LY; Zhao YH Int J Nanomedicine; 2017; 12():6721-6733. PubMed ID: 28932116 [TBL] [Abstract][Full Text] [Related]
18. The effects of dynamic compression on the development of cartilage grafts engineered using bone marrow and infrapatellar fat pad derived stem cells. Luo L; Thorpe SD; Buckley CT; Kelly DJ Biomed Mater; 2015 Sep; 10(5):055011. PubMed ID: 26391756 [TBL] [Abstract][Full Text] [Related]
19. Improved chondrogenesis and engineered cartilage formation from TGF-β3-expressing adipose-derived stem cells cultured in the rotating-shaft bioreactor. Lu CH; Lin KJ; Chiu HY; Chen CY; Yen TC; Hwang SM; Chang YH; Hu YC Tissue Eng Part A; 2012 Oct; 18(19-20):2114-24. PubMed ID: 22712565 [TBL] [Abstract][Full Text] [Related]
20. In vitro cartilage production using an extracellular matrix-derived scaffold and bone marrow-derived mesenchymal stem cells. Zhao YH; Yang Q; Xia Q; Peng J; Lu SB; Guo QY; Ma XL; Xu BS; Hu YC; Zhao B; Zhang L; Wang AY; Xu WJ; Miao J; Liu Y Chin Med J (Engl); 2013 Aug; 126(16):3130-7. PubMed ID: 23981625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]