BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 25657010)

  • 1. Roles of mRNA fate modulators Dhh1 and Pat1 in TNRC6-dependent gene silencing recapitulated in yeast.
    Makino S; Mishima Y; Inoue K; Inada T
    J Biol Chem; 2015 Mar; 290(13):8331-47. PubMed ID: 25657010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4.
    Miller JE; Zhang L; Jiang H; Li Y; Pugh BF; Reese JC
    G3 (Bethesda); 2018 Jan; 8(1):315-330. PubMed ID: 29158339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved mRNA-granule component Scd6 targets Dhh1 to repress translation initiation and activates Dcp2-mediated mRNA decay in vivo.
    Zeidan Q; He F; Zhang F; Zhang H; Jacobson A; Hinnebusch AG
    PLoS Genet; 2018 Dec; 14(12):e1007806. PubMed ID: 30532217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms.
    Nissan T; Rajyaguru P; She M; Song H; Parker R
    Mol Cell; 2010 Sep; 39(5):773-83. PubMed ID: 20832728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stm1 modulates mRNA decay and Dhh1 function in Saccharomyces cerevisiae.
    Balagopal V; Parker R
    Genetics; 2009 Jan; 181(1):93-103. PubMed ID: 19015546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential recruitment of the mRNA decay machinery to the iron-regulated protein Cth2 in Saccharomyces cerevisiae.
    Perea-García A; Miró P; Jiménez-Lorenzo R; Martínez-Pastor MT; Puig S
    Biochim Biophys Acta Gene Regul Mech; 2020 Sep; 1863(9):194595. PubMed ID: 32565401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CCR4-NOT deadenylates mRNA associated with RNA-induced silencing complexes in human cells.
    Piao X; Zhang X; Wu L; Belasco JG
    Mol Cell Biol; 2010 Mar; 30(6):1486-94. PubMed ID: 20065043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mRNA Deadenylation Is Coupled to Translation Rates by the Differential Activities of Ccr4-Not Nucleases.
    Webster MW; Chen YH; Stowell JAW; Alhusaini N; Sweet T; Graveley BR; Coller J; Passmore LA
    Mol Cell; 2018 Jun; 70(6):1089-1100.e8. PubMed ID: 29932902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General decapping activators target different subsets of inefficiently translated mRNAs.
    He F; Celik A; Wu C; Jacobson A
    Elife; 2018 Dec; 7():. PubMed ID: 30520724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pat1 promotes processing body assembly by enhancing the phase separation of the DEAD-box ATPase Dhh1 and RNA.
    Sachdev R; Hondele M; Linsenmeier M; Vallotton P; Mugler CF; Arosio P; Weis K
    Elife; 2019 Jan; 8():. PubMed ID: 30648970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1.
    Fischer N; Weis K
    EMBO J; 2002 Jun; 21(11):2788-97. PubMed ID: 12032091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initiation of the yeast G0 program requires Igo1 and Igo2, which antagonize activation of decapping of specific nutrient-regulated mRNAs.
    Luo X; Talarek N; De Virgilio C
    RNA Biol; 2011; 8(1):14-7. PubMed ID: 21289492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The yeast EDC1 mRNA undergoes deadenylation-independent decapping stimulated by Not2p, Not4p, and Not5p.
    Muhlrad D; Parker R
    EMBO J; 2005 Mar; 24(5):1033-45. PubMed ID: 15706350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PUF3 acceleration of deadenylation in vivo can operate independently of CCR4 activity, possibly involving effects on the PAB1-mRNP structure.
    Lee D; Ohn T; Chiang YC; Quigley G; Yao G; Liu Y; Denis CL
    J Mol Biol; 2010 Jun; 399(4):562-75. PubMed ID: 20435044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. mRNA decapping activators Pat1 and Dhh1 regulate transcript abundance and translation to tune cellular responses to nutrient availability.
    Vijjamarri AK; Gupta N; Onu C; Niu X; Zhang F; Kumar R; Lin Z; Greenberg ML; Hinnebusch AG
    Nucleic Acids Res; 2023 Sep; 51(17):9314-9336. PubMed ID: 37439347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diauxic shift-dependent relocalization of decapping activators Dhh1 and Pat1 to polysomal complexes.
    Drummond SP; Hildyard J; Firczuk H; Reamtong O; Li N; Kannambath S; Claydon AJ; Beynon RJ; Eyers CE; McCarthy JE
    Nucleic Acids Res; 2011 Sep; 39(17):7764-74. PubMed ID: 21712243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases.
    Funakoshi Y; Doi Y; Hosoda N; Uchida N; Osawa M; Shimada I; Tsujimoto M; Suzuki T; Katada T; Hoshino S
    Genes Dev; 2007 Dec; 21(23):3135-48. PubMed ID: 18056425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae.
    Tucker M; Staples RR; Valencia-Sanchez MA; Muhlrad D; Parker R
    EMBO J; 2002 Mar; 21(6):1427-36. PubMed ID: 11889048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATPase activity of the DEAD-box protein Dhh1 controls processing body formation.
    Mugler CF; Hondele M; Heinrich S; Sachdev R; Vallotton P; Koek AY; Chan LY; Weis K
    Elife; 2016 Oct; 5():. PubMed ID: 27692063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NOT10 and C2orf29/NOT11 form a conserved module of the CCR4-NOT complex that docks onto the NOT1 N-terminal domain.
    Bawankar P; Loh B; Wohlbold L; Schmidt S; Izaurralde E
    RNA Biol; 2013 Feb; 10(2):228-44. PubMed ID: 23303381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.