These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25657056)

  • 1. Maintenance of HL-1 cardiomyocyte functional activity in PEGylated fibrin gels.
    Geuss LR; Allen AC; Ramamoorthy D; Suggs LJ
    Biotechnol Bioeng; 2015 Jul; 112(7):1446-56. PubMed ID: 25657056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional culture for expansion and differentiation of mouse embryonic stem cells.
    Liu H; Collins SF; Suggs LJ
    Biomaterials; 2006 Dec; 27(36):6004-14. PubMed ID: 16860386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A PEGylated fibrin patch for mesenchymal stem cell delivery.
    Zhang G; Wang X; Wang Z; Zhang J; Suggs L
    Tissue Eng; 2006 Jan; 12(1):9-19. PubMed ID: 16499438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioengineering of dental stem cells in a PEGylated fibrin gel.
    Galler KM; Cavender AC; Koeklue U; Suggs LJ; Schmalz G; D'Souza RN
    Regen Med; 2011 Mar; 6(2):191-200. PubMed ID: 21391853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering.
    LaNasa SM; Bryant SJ
    Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micropatterned fibrin scaffolds increase cardiomyocyte alignment and contractility for the fabrication of engineered myocardial tissue.
    English EJ; Samolyk BL; Gaudette GR; Pins GD
    J Biomed Mater Res A; 2023 Sep; 111(9):1309-1321. PubMed ID: 36932841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crosslinked fibrin gels for tissue engineering: two approaches to improve their properties.
    Gamboa-Martínez TC; Luque-Guillén V; González-García C; Gómez Ribelles JL; Gallego-Ferrer G
    J Biomed Mater Res A; 2015 Feb; 103(2):614-21. PubMed ID: 24771715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and fabrication of heart muscle using scaffold-based tissue engineering.
    Blan NR; Birla RK
    J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of physiological matrix conditions on permanent culture of induced pluripotent stem cell-derived cardiomyocytes.
    Heras-Bautista CO; Katsen-Globa A; Schloerer NE; Dieluweit S; Abd El Aziz OM; Peinkofer G; Attia WA; Khalil M; Brockmeier K; Hescheler J; Pfannkuche K
    Biomaterials; 2014 Aug; 35(26):7374-85. PubMed ID: 24889032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of plastic compression to modulate fibrin hydrogel mechanical properties.
    Haugh MG; Thorpe SD; Vinardell T; Buckley CT; Kelly DJ
    J Mech Behav Biomed Mater; 2012 Dec; 16():66-72. PubMed ID: 23149099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing salinity of fibrinogen solvent generates stable fibrin hydrogels for cell delivery or tissue engineering.
    Jarrell DK; Vanderslice EJ; Lennon ML; Lyons AC; VeDepo MC; Jacot JG
    PLoS One; 2021; 16(5):e0239242. PubMed ID: 34010323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological and mechanical implications of PEGylating proteins into hydrogel biomaterials.
    Gonen-Wadmany M; Goldshmid R; Seliktar D
    Biomaterials; 2011 Sep; 32(26):6025-33. PubMed ID: 21669457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An injectable hydrogel incorporating mesenchymal precursor cells and pentosan polysulphate for intervertebral disc regeneration.
    Frith JE; Cameron AR; Menzies DJ; Ghosh P; Whitehead DL; Gronthos S; Zannettino AC; Cooper-White JJ
    Biomaterials; 2013 Dec; 34(37):9430-40. PubMed ID: 24050877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compositional alterations of fibrin-based materials for regulating in vitro neural outgrowth.
    Sarig-Nadir O; Seliktar D
    Tissue Eng Part A; 2008 Mar; 14(3):401-11. PubMed ID: 18333792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encapsulation of cardiomyocytes in a fibrin hydrogel for cardiac tissue engineering.
    Yuan Ye K; Sullivan KE; Black LD
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21968517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels.
    Rowe SL; Lee S; Stegemann JP
    Acta Biomater; 2007 Jan; 3(1):59-67. PubMed ID: 17085089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy.
    Wang F; Guan J
    Adv Drug Deliv Rev; 2010 Jun; 62(7-8):784-97. PubMed ID: 20214939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds.
    Pelaez D; Huang CY; Cheung HS
    Stem Cells Dev; 2009; 18(1):93-102. PubMed ID: 18399763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An adaptable hydrogel array format for 3-dimensional cell culture and analysis.
    Jongpaiboonkit L; King WJ; Lyons GE; Paguirigan AL; Warrick JW; Beebe DJ; Murphy WL
    Biomaterials; 2008 Aug; 29(23):3346-56. PubMed ID: 18486205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of electrospun poly (lactide-co-glycolide)-fibrin multiscale scaffold for myocardial regeneration in vitro.
    Sreerekha PR; Menon D; Nair SV; Chennazhi KP
    Tissue Eng Part A; 2013 Apr; 19(7-8):849-59. PubMed ID: 23083104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.