BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

668 related articles for article (PubMed ID: 25657582)

  • 21. Loss of PAFR prevents neuroinflammation and brain dysfunction after traumatic brain injury.
    Yin XJ; Chen ZY; Zhu XN; Hu JJ
    Sci Rep; 2017 Jan; 7():40614. PubMed ID: 28094295
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brain-Immune Interactions and Neuroinflammation After Traumatic Brain Injury.
    Dinet V; Petry KG; Badaut J
    Front Neurosci; 2019; 13():1178. PubMed ID: 31780883
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Omega-3 polyunsaturated fatty acid attenuates the inflammatory response by modulating microglia polarization through SIRT1-mediated deacetylation of the HMGB1/NF-κB pathway following experimental traumatic brain injury.
    Chen X; Chen C; Fan S; Wu S; Yang F; Fang Z; Fu H; Li Y
    J Neuroinflammation; 2018 Apr; 15(1):116. PubMed ID: 29678169
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage.
    Glushakova OY; Johnson D; Hayes RL
    J Neurotrauma; 2014 Jul; 31(13):1180-93. PubMed ID: 24564198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuroimmune responses in the developing brain following traumatic brain injury.
    Nasr IW; Chun Y; Kannan S
    Exp Neurol; 2019 Oct; 320():112957. PubMed ID: 31108085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathophysiology Associated with Traumatic Brain Injury: Current Treatments and Potential Novel Therapeutics.
    Pearn ML; Niesman IR; Egawa J; Sawada A; Almenar-Queralt A; Shah SB; Duckworth JL; Head BP
    Cell Mol Neurobiol; 2017 May; 37(4):571-585. PubMed ID: 27383839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Previous physical exercise alters the hepatic profile of oxidative-inflammatory status and limits the secondary brain damage induced by severe traumatic brain injury in rats.
    de Castro MRT; Ferreira APO; Busanello GL; da Silva LRH; da Silveira Junior MEP; Fiorin FDS; Arrifano G; Crespo-López ME; Barcelos RP; Cuevas MJ; Bresciani G; González-Gallego J; Fighera MR; Royes LFF
    J Physiol; 2017 Sep; 595(17):6023-6044. PubMed ID: 28726269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Traumatic brain injury (TBI) in collision sports: Possible mechanisms of transformation into chronic traumatic encephalopathy (CTE).
    VanItallie TB
    Metabolism; 2019 Nov; 100S():153943. PubMed ID: 31610856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellular players that shape evolving pathology and neurodegeneration following traumatic brain injury.
    Puntambekar SS; Saber M; Lamb BT; Kokiko-Cochran ON
    Brain Behav Immun; 2018 Jul; 71():9-17. PubMed ID: 29601944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diabetes insipidus contributes to traumatic brain injury pathology via CD36 neuroinflammation.
    Diamandis T; Gonzales-Portillo C; Gonzales-Portillo GS; Staples M; Borlongan MC; Hernandez D; Acosta S; Borlongan CV
    Med Hypotheses; 2013 Nov; 81(5):936-9. PubMed ID: 24021616
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease.
    Sundman MH; Chen NK; Subbian V; Chou YH
    Brain Behav Immun; 2017 Nov; 66():31-44. PubMed ID: 28526435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long-Term Consequences of Traumatic Brain Injury: Current Status of Potential Mechanisms of Injury and Neurological Outcomes.
    Bramlett HM; Dietrich WD
    J Neurotrauma; 2015 Dec; 32(23):1834-48. PubMed ID: 25158206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The immunology of traumatic brain injury: a prime target for Alzheimer's disease prevention.
    Giunta B; Obregon D; Velisetty R; Sanberg PR; Borlongan CV; Tan J
    J Neuroinflammation; 2012 Aug; 9():185. PubMed ID: 22849382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Western diet aggravates neuronal insult in post-traumatic brain injury: Proposed pathways for interplay.
    Shaito A; Hasan H; Habashy KJ; Fakih W; Abdelhady S; Ahmad F; Zibara K; Eid AH; El-Yazbi AF; Kobeissy FH
    EBioMedicine; 2020 Jul; 57():102829. PubMed ID: 32574954
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuroinflammation after Traumatic Brain Injury Is Enhanced in Activating Transcription Factor 3 Mutant Mice.
    Förstner P; Rehman R; Anastasiadou S; Haffner-Luntzer M; Sinske D; Ignatius A; Roselli F; Knöll B
    J Neurotrauma; 2018 Oct; 35(19):2317-2329. PubMed ID: 29463176
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuroinflammation in animal models of traumatic brain injury.
    Chiu CC; Liao YE; Yang LY; Wang JY; Tweedie D; Karnati HK; Greig NH; Wang JY
    J Neurosci Methods; 2016 Oct; 272():38-49. PubMed ID: 27382003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mathematical model of neuroinflammation in severe clinical traumatic brain injury.
    Vaughan LE; Ranganathan PR; Kumar RG; Wagner AK; Rubin JE
    J Neuroinflammation; 2018 Dec; 15(1):345. PubMed ID: 30563537
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.