BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25657618)

  • 1. Reducing the computational footprint for real-time BCPNN learning.
    Vogginger B; Schüffny R; Lansner A; Cederström L; Partzsch J; Höppner S
    Front Neurosci; 2015; 9():2. PubMed ID: 25657618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale Simulations of Plastic Neural Networks on Neuromorphic Hardware.
    Knight JC; Tully PJ; Kaplan BA; Lansner A; Furber SB
    Front Neuroanat; 2016; 10():37. PubMed ID: 27092061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the BCPNN Learning Rule to a Memristor Model.
    Wang D; Xu J; Stathis D; Zhang L; Li F; Lansner A; Hemani A; Yang Y; Herman P; Zou Z
    Front Neurosci; 2021; 15():750458. PubMed ID: 34955716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing BCPNN Learning Rule for Memory Access.
    Yang Y; Stathis D; Jordão R; Hemani A; Lansner A
    Front Neurosci; 2020; 14():878. PubMed ID: 32982673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synapse-Centric Mapping of Cortical Models to the SpiNNaker Neuromorphic Architecture.
    Knight JC; Furber SB
    Front Neurosci; 2016; 10():420. PubMed ID: 27683540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Traces of semantization - from episodic to semantic memory in a spiking cortical network model.
    Chrysanthidis N; Fiebig F; Lansner A; Herman P
    eNeuro; 2022 Jul; 9(4):. PubMed ID: 35803714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Synapse Memory Structure for Reconfigurable Digital Neuromorphic Hardware.
    Kim J; Koo J; Kim T; Kim JJ
    Front Neurosci; 2018; 12():829. PubMed ID: 30515074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines.
    Neftci EO; Augustine C; Paul S; Detorakis G
    Front Neurosci; 2017; 11():324. PubMed ID: 28680387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model.
    van Albada SJ; Rowley AG; Senk J; Hopkins M; Schmidt M; Stokes AB; Lester DR; Diesmann M; Furber SB
    Front Neurosci; 2018; 12():291. PubMed ID: 29875620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organizing Sequential Memory in a Neuromorphic Device Using Dynamic Neural Fields.
    Kreiser R; Aathmani D; Qiao N; Indiveri G; Sandamirskaya Y
    Front Neurosci; 2018; 12():717. PubMed ID: 30524218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Memristor-Based Learning Engine for Synaptic Trace-Based Online Learning.
    Wang D; Xu J; Li F; Zhang L; Cao C; Stathis D; Lansner A; Hemani A; Zheng LR; Zou Z
    IEEE Trans Biomed Circuits Syst; 2023 Oct; 17(5):1153-1165. PubMed ID: 37390002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences.
    Tully PJ; Lindén H; Hennig MH; Lansner A
    PLoS Comput Biol; 2016 May; 12(5):e1004954. PubMed ID: 27213810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiclass Classification by Adaptive Network of Dendritic Neurons with Binary Synapses Using Structural Plasticity.
    Hussain S; Basu A
    Front Neurosci; 2016; 10():113. PubMed ID: 27065782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural associative memory with optimal Bayesian learning.
    Knoblauch A
    Neural Comput; 2011 Jun; 23(6):1393-451. PubMed ID: 21395440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallelization of Neural Processing on Neuromorphic Hardware.
    Peres L; Rhodes O
    Front Neurosci; 2022; 16():867027. PubMed ID: 35620669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Information bottleneck-based Hebbian learning rule naturally ties working memory and synaptic updates.
    Daruwalla K; Lipasti M
    Front Comput Neurosci; 2024; 18():1240348. PubMed ID: 38818385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges.
    Dutta S; Schafer C; Gomez J; Ni K; Joshi S; Datta S
    Front Neurosci; 2020; 14():634. PubMed ID: 32670012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Spike-Driven Learning With Dendritic Event-Based Processing.
    Yang S; Gao T; Wang J; Deng B; Lansdell B; Linares-Barranco B
    Front Neurosci; 2021; 15():601109. PubMed ID: 33679295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On Practical Issues for Stochastic STDP Hardware With 1-bit Synaptic Weights.
    Yousefzadeh A; Stromatias E; Soto M; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2018; 12():665. PubMed ID: 30374283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.