BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25657645)

  • 1. Methanothermobacter thermautotrophicus modulates its membrane lipids in response to hydrogen and nutrient availability.
    Yoshinaga MY; Gagen EJ; Wörmer L; Broda NK; Meador TB; Wendt J; Thomm M; Hinrichs KU
    Front Microbiol; 2015; 6():5. PubMed ID: 25657645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptome analysis of responses of Methanothermobacter thermautotrophicus to different environmental stimuli.
    Kato S; Kosaka T; Watanabe K
    Environ Microbiol; 2008 Apr; 10(4):893-905. PubMed ID: 18036179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Shuttle-Vector System Allows Heterologous Gene Expression in the Thermophilic Methanogen Methanothermobacter thermautotrophicus ΔH.
    Fink C; Beblawy S; Enkerlin AM; Mühling L; Angenent LT; Molitor B
    mBio; 2021 Dec; 12(6):e0276621. PubMed ID: 34809461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Targeted Deletion of Genes Responsible for Expression of the Mth60 Fimbriae Leads to Loss of Cell-Cell Connections in Methanothermobacter thermautotrophicus ΔH.
    Fink C; Martinez-Cano G; Shuster J; Panzera A; Rennhack KE; Rohbohm N; Angenent LT; Molitor B
    Appl Environ Microbiol; 2023 Jul; 89(7):e0057523. PubMed ID: 37310347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative proteomic analysis of Methanothermobacter thermautotrophicus reveals methane formation from H
    Liu C; Mao L; Zheng X; Yuan J; Hu B; Cai Y; Xie H; Peng X; Ding X
    Microbiologyopen; 2019 May; 8(5):e00715. PubMed ID: 30260585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Certain, but Not All, Tetraether Lipids from the Thermoacidophilic Archaeon
    Bonanno A; Chong PL
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Group Distribution of the Carrier Surface Influences Adhesion of
    Umetsu M; Sunouchi T; Fukuda Y; Takahashi H; Tada C
    Archaea; 2020; 2020():9432803. PubMed ID: 32047361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical control of redox potential affects methanogenesis of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus.
    Hirano S; Matsumoto N; Morita M; Sasaki K; Ohmura N
    Lett Appl Microbiol; 2013 May; 56(5):315-21. PubMed ID: 23413966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Draft Genome Sequence of Methanothermobacter thermautotrophicus WHS, a Thermophilic Hydrogenotrophic Methanogen from Washburn Hot Springs in Yellowstone National Park, USA.
    McKay LJ; Klingelsmith KB; Deutschbauer AM; Inskeep WP; Fields MW
    Microbiol Resour Announc; 2021 Feb; 10(5):. PubMed ID: 33541873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of tetraether lipid composition in the adaptation of thermophilic archaea to acidity.
    Boyd ES; Hamilton TL; Wang J; He L; Zhang CL
    Front Microbiol; 2013; 4():62. PubMed ID: 23565112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and genetic basis for self-aggregation of a thermophilic hydrogenotrophic methanogen, Methanothermobacter strain CaT2.
    Kosaka T; Toh H; Fujiyama A; Sakaki Y; Watanabe K; Meng XY; Hanada S; Toyoda A
    Environ Microbiol Rep; 2014 Jun; 6(3):268-77. PubMed ID: 24983531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitor pravastatin on membrane lipids and membrane associated functions of Methanothermobacter thermautotrophicus.
    Nováková Z; Blasko J; Hapala I; Smigán P
    Folia Microbiol (Praha); 2010 Jul; 55(4):359-62. PubMed ID: 20680571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetrical topology of diether- and tetraether-type polar lipids in membranes of Methanobacterium thermoautotrophicum cells.
    Morii H; Koga Y
    J Biol Chem; 1994 Apr; 269(14):10492-7. PubMed ID: 8144633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of the DnaK chaperone system from the archaeon Methanothermobacter thermautotrophicus DeltaH.
    Popp SL; Reinstein J
    FEBS Lett; 2009 Feb; 583(3):573-8. PubMed ID: 19162025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of growth temperature on ether lipid biochemistry in Archaeoglobus fulgidus.
    Lai D; Springstead JR; Monbouquette HG
    Extremophiles; 2008 Mar; 12(2):271-8. PubMed ID: 18157503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methane production by Methanothermobacter thermautotrophicus to recover energy from carbon dioxide sequestered in geological reservoirs.
    Kawaguchi H; Sakuma T; Nakata Y; Kobayashi H; Endo K; Sato K
    J Biosci Bioeng; 2010 Jul; 110(1):106-8. PubMed ID: 20541126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomic analysis reveals starvation survival systems in Methanothermobacter thermautotrophicus ΔH.
    Prathiviraj R; Chellapandi P
    Anaerobe; 2020 Aug; 64():102216. PubMed ID: 32504807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of archaeal enzymes involved in polar lipid synthesis linking amino acid sequence information, genomic contexts and lipid composition.
    Daiyasu H; Kuma K; Yokoi T; Morii H; Koga Y; Toh H
    Archaea; 2005 Dec; 1(6):399-410. PubMed ID: 16243780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Growth Phase, pH, and Temperature on the Abundance and Composition of Tetraether Lipids in the Thermoacidophile Picrophilus torridus.
    Feyhl-Buska J; Chen Y; Jia C; Wang JX; Zhang CL; Boyd ES
    Front Microbiol; 2016; 7():1323. PubMed ID: 27625636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze-fracture planes of methanogen membranes correlate with the content of tetraether lipids.
    Beveridge TJ; Choquet CG; Patel GB; Sprott GD
    J Bacteriol; 1993 Feb; 175(4):1191-7. PubMed ID: 8432712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.