These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25657874)

  • 1. Micro flow cytometer with self-aligned 3D hydrodynamic focusing.
    Testa G; Persichetti G; Bernini R
    Biomed Opt Express; 2015 Jan; 6(1):54-62. PubMed ID: 25657874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Open flow cytometer with the combination of 3D hydrodynamic single cell focusing and confocal laser-induced fluorescence detection.
    Wu C; Wei X; Men X; Xu Y; Bai J; Wang Y; Zhou L; Yu YL; Xu ZR; Chen ML; Wang JH
    Talanta; 2023 Jun; 258():124424. PubMed ID: 36905790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic optical alignment for microflow cytometry.
    Kennedy MJ; Stelick SJ; Sayam LG; Yen A; Erickson D; Batt CA
    Lab Chip; 2011 Mar; 11(6):1138-43. PubMed ID: 21279198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hydrodynamic focusing microchannel based on micro-weir shear lift force.
    Yang RJ; Hou HH; Wang YN; Lin CH; Fu LM
    Biomicrofluidics; 2012 Sep; 6(3):34110. PubMed ID: 23919100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and numerical investigation into micro-flow cytometer with 3-D hydrodynamic focusing effect and micro-weir structure.
    Hou HH; Tsai CH; Fu LM; Yang RJ
    Electrophoresis; 2009 Jul; 30(14):2507-15. PubMed ID: 19639570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system.
    Zhuang G; Jensen TG; Kutter JP
    Electrophoresis; 2012 Jul; 33(12):1715-22. PubMed ID: 22740459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low-cost flow cell for flow cytometry.
    Mir MA; Tirumkudulu MS
    Biosens Bioelectron; 2022 Sep; 211():114334. PubMed ID: 35588635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic flow cytometer performance enhancement by two-dimensional acoustic focusing.
    Li Z; Li P; Xu J; Shao W; Yang C; Cui Y
    Biomed Microdevices; 2020 Mar; 22(2):27. PubMed ID: 32222836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterization of an integrated silicon micro flow cytometer.
    Bernini R; De Nuccio E; Brescia F; Minardo A; Zeni L; Sarro PM; Palumbo R; Scarfi MR
    Anal Bioanal Chem; 2006 Nov; 386(5):1267-72. PubMed ID: 16841207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microflow cytometers with integrated hydrodynamic focusing.
    Frankowski M; Theisen J; Kummrow A; Simon P; Ragusch H; Bock N; Schmidt M; Neukammer J
    Sensors (Basel); 2013 Apr; 13(4):4674-93. PubMed ID: 23571670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer.
    Barat D; Spencer D; Benazzi G; Mowlem MC; Morgan H
    Lab Chip; 2012 Jan; 12(1):118-26. PubMed ID: 22051732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic focusing investigation in a micro-flow cytometer.
    Yang AS; Hsieh WH
    Biomed Microdevices; 2007 Apr; 9(2):113-22. PubMed ID: 17151936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of hydrodynamic focusing in a microfluidic coulter counter device.
    Zhang M; Lian Y; Harnett C; Brehob E
    J Biomech Eng; 2012 Aug; 134(8):081001. PubMed ID: 22938354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single stream inertial focusing in low aspect-ratio triangular microchannels.
    Mukherjee P; Wang X; Zhou J; Papautsky I
    Lab Chip; 2018 Dec; 19(1):147-157. PubMed ID: 30488049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-parameter analysis using photovoltaic cell-based optofluidic cytometer.
    Yan CS; Wang YN
    Biomed Opt Express; 2016 Sep; 7(9):3585-3595. PubMed ID: 27699122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Hydrodynamic Focusing in Microscale Optofluidic Channels Formed with a Single Sacrificial Layer.
    Hamilton ES; Ganjalizadeh V; Wright JG; Schmidt H; Hawkins AR
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32230783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An adaptive three-dimensional hydrodynamic focusing microfluidic impedance flow cytometer.
    Zhou Y; Wang J; Liu T; Wu M; Lan Y; Jia C; Zhao J
    Analyst; 2023 Jul; 148(14):3239-3246. PubMed ID: 37341575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universally applicable three-dimensional hydrodynamic microfluidic flow focusing.
    Chiu YJ; Cho SH; Mei Z; Lien V; Wu TF; Lo YH
    Lab Chip; 2013 May; 13(9):1803-9. PubMed ID: 23493956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.