BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25658036)

  • 1. Two-photon Laurdan studies of the ternary lipid mixture DOPC:SM:cholesterol reveal a single liquid phase at sphingomyelin:cholesterol ratios lower than 1.
    Carravilla P; Nieva JL; Goñi FM; Requejo-Isidro J; Huarte N
    Langmuir; 2015 Mar; 31(9):2808-17. PubMed ID: 25658036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of fluid-ordered/fluid-disordered phase coexistence in ceramide/POPC mixtures containing cholesterol.
    Fidorra M; Duelund L; Leidy C; Simonsen AC; Bagatolli LA
    Biophys J; 2006 Jun; 90(12):4437-51. PubMed ID: 16565051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature and pressure effects on structural and conformational properties of POPC/SM/cholesterol model raft mixtures--a FT-IR, SAXS, DSC, PPC and Laurdan fluorescence spectroscopy study.
    Nicolini C; Kraineva J; Khurana M; Periasamy N; Funari SS; Winter R
    Biochim Biophys Acta; 2006 Feb; 1758(2):248-58. PubMed ID: 16529710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures.
    Bunge A; Müller P; Stöckl M; Herrmann A; Huster D
    Biophys J; 2008 Apr; 94(7):2680-90. PubMed ID: 18178660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of temperature, pressure and peptide incorporation on ternary model raft mixtures--a Laurdan fluorescence spectroscopy study.
    Periasamy N; Winter R
    Biochim Biophys Acta; 2006 Mar; 1764(3):398-404. PubMed ID: 16330267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase diagram of a polyunsaturated lipid mixture: Brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol.
    Konyakhina TM; Feigenson GW
    Biochim Biophys Acta; 2016 Jan; 1858(1):153-61. PubMed ID: 26525664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide.
    Taniguchi Y; Ohba T; Miyata H; Ohki K
    Biochim Biophys Acta; 2006 Feb; 1758(2):145-53. PubMed ID: 16580624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jan; 78(1):290-305. PubMed ID: 10620293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesterol displacement by ceramide in sphingomyelin-containing liquid-ordered domains, and generation of gel regions in giant lipidic vesicles.
    Sot J; Ibarguren M; Busto JV; Montes LR; Goñi FM; Alonso A
    FEBS Lett; 2008 Sep; 582(21-22):3230-6. PubMed ID: 18755187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of cholesterol in ternary lipid mixtures investigated using single-molecule fluorescence.
    DeWitt BN; Dunn RC
    Langmuir; 2015 Jan; 31(3):995-1004. PubMed ID: 25531175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Miscibility phase diagrams of giant vesicles containing sphingomyelin.
    Veatch SL; Keller SL
    Phys Rev Lett; 2005 Apr; 94(14):148101. PubMed ID: 15904115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of phase separation phenomena in hybrid lipid/block copolymer/cholesterol bilayers using laurdan fluorescence with log-normal multipeak analysis.
    Hamada N; Longo ML
    Biochim Biophys Acta Biomembr; 2022 May; 1864(5):183887. PubMed ID: 35150645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lowering line tension with high cholesterol content induces a transition from macroscopic to nanoscopic phase domains in model biomembranes.
    Tsai WC; Feigenson GW
    Biochim Biophys Acta Biomembr; 2019 Feb; 1861(2):478-485. PubMed ID: 30529459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic force microscopy study of ganglioside GM1 concentration effect on lateral phase separation of sphingomyelin/dioleoylphosphatidylcholine/cholesterol bilayers.
    Bao R; Li L; Qiu F; Yang Y
    J Phys Chem B; 2011 May; 115(19):5923-9. PubMed ID: 21526782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a DOPC/PSM/cholesterol phase diagram based on the fluorescence properties of trans-parinaric acid.
    Nyholm TK; Lindroos D; Westerlund B; Slotte JP
    Langmuir; 2011 Jul; 27(13):8339-50. PubMed ID: 21627141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-nervonoylsphingomyelin (C24:1) prevents lateral heterogeneity in cholesterol-containing membranes.
    Maté S; Busto JV; García-Arribas AB; Sot J; Vazquez R; Herlax V; Wolf C; Bakás L; Goñi FM
    Biophys J; 2014 Jun; 106(12):2606-16. PubMed ID: 24940778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature and composition dependence of the interaction of delta-lysin with ternary mixtures of sphingomyelin/cholesterol/POPC.
    Pokorny A; Yandek LE; Elegbede AI; Hinderliter A; Almeida PF
    Biophys J; 2006 Sep; 91(6):2184-97. PubMed ID: 16798807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phospholipid lateral diffusion in phosphatidylcholine-sphingomyelin-cholesterol monolayers; effects of oxidatively truncated phosphatidylcholines.
    Parkkila P; Stefl M; Olżyńska A; Hof M; Kinnunen PK
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):167-73. PubMed ID: 25450344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles.
    Lin Q; London E
    Biophys J; 2015 May; 108(9):2212-22. PubMed ID: 25954879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I.
    Massey JB; Pownall HJ
    Biochemistry; 2005 Aug; 44(30):10423-33. PubMed ID: 16042420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.