These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Novel crown ethers on glucose based glycolipids. Sabah K; Heidelberg T; Hashim R Carbohydr Res; 2011 May; 346(7):891-6. PubMed ID: 21450278 [TBL] [Abstract][Full Text] [Related]
3. "Click-and-click"--hybridised 1,2,3-triazoles supported Cu(I) coordination polymers for azide-alkyne cycloaddition. Jiang L; Wang Z; Bai SQ; Hor TS Dalton Trans; 2013 Jul; 42(26):9437-43. PubMed ID: 23695801 [TBL] [Abstract][Full Text] [Related]
4. The mechanism of copper-catalyzed azide-alkyne cycloaddition reaction: a quantum mechanical investigation. Ozen C; Tüzün NŞ J Mol Graph Model; 2012 Apr; 34():101-7. PubMed ID: 22306418 [TBL] [Abstract][Full Text] [Related]
5. Efficient access to new chemical space through flow--construction of druglike macrocycles through copper-surface-catalyzed azide-alkyne cycloaddition reactions. Bogdan AR; James K Chemistry; 2010 Dec; 16(48):14506-12. PubMed ID: 21038332 [TBL] [Abstract][Full Text] [Related]
6. Stereoselective synthesis of bio-hybrid amphiphiles of coumarin derivatives by Ugi-Mannich triazole randomization using copper catalyzed alkyne azide click chemistry. Pramitha P; Bahulayan D Bioorg Med Chem Lett; 2012 Apr; 22(7):2598-603. PubMed ID: 22374215 [TBL] [Abstract][Full Text] [Related]
7. Steroid/triterpenoid functional molecules based on "click chemistry". Hu J; Lu JR; Ju Y Chem Asian J; 2011 Oct; 6(10):2636-47. PubMed ID: 21887746 [TBL] [Abstract][Full Text] [Related]
8. Multifunctional Giant Amphiphiles via simultaneous copper(I)-catalyzed azide-alkyne cycloaddition and living radical polymerization. Daskalaki E; Le Droumaguet B; Gérard D; Velonia K Chem Commun (Camb); 2012 Feb; 48(10):1586-8. PubMed ID: 21959713 [TBL] [Abstract][Full Text] [Related]
9. The "click" reaction involving metal azides, metal alkynes, or both: an exploration into multimetal structures. Casarrubios L; de la Torre MC; Sierra MA Chemistry; 2013 Mar; 19(11):3534-41. PubMed ID: 23418069 [TBL] [Abstract][Full Text] [Related]
10. Specific surface modification of the acetylene-linked glycolipid vesicle by click chemistry. Ito H; Kamachi T; Yashima E Chem Commun (Camb); 2012 Jun; 48(45):5650-2. PubMed ID: 22543823 [TBL] [Abstract][Full Text] [Related]
11. Alkynyl crown ethers as a scaffold for hyperconjugative assistance in noncatalyzed azide-alkyne click reactions: ion sensing through enhanced transition-state stabilization. Gold B; Batsomboon P; Dudley GB; Alabugin IV J Org Chem; 2014 Jul; 79(13):6221-32. PubMed ID: 24927131 [TBL] [Abstract][Full Text] [Related]
12. Copper-chelating azides for efficient click conjugation reactions in complex media. Bevilacqua V; King M; Chaumontet M; Nothisen M; Gabillet S; Buisson D; Puente C; Wagner A; Taran F Angew Chem Int Ed Engl; 2014 Jun; 53(23):5872-6. PubMed ID: 24788475 [TBL] [Abstract][Full Text] [Related]
13. Catalytic "active-metal" template synthesis of [2]rotaxanes, [3]rotaxanes, and molecular shuttles, and some observations on the mechanism of the cu(i)-catalyzed azide-alkyne 1,3-cycloaddition. Aucagne V; Berna J; Crowley JD; Goldup SM; Hänni KD; Leigh DA; Lusby PJ; Ronaldson VE; Slawin AM; Viterisi A; Walker DB J Am Chem Soc; 2007 Oct; 129(39):11950-63. PubMed ID: 17845039 [TBL] [Abstract][Full Text] [Related]
14. The high-throughput synthesis and phase characterisation of amphiphiles: a sweet case study. Feast GC; Hutt OE; Mulet X; Conn CE; Drummond CJ; Savage GP Chemistry; 2014 Mar; 20(10):2783-92. PubMed ID: 24677204 [TBL] [Abstract][Full Text] [Related]
15. Copper-catalyzed azide-alkyne cycloaddition in the synthesis of polydiacetylene: "click glycoliposome" as biosensors for the specific detection of lectins. Leal MP; Assali M; Fernández I; Khiar N Chemistry; 2011 Feb; 17(6):1828-36. PubMed ID: 21274934 [TBL] [Abstract][Full Text] [Related]
16. Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide-alkyne cycloadditions. Lallana E; Riguera R; Fernandez-Megia E Angew Chem Int Ed Engl; 2011 Sep; 50(38):8794-804. PubMed ID: 21905176 [TBL] [Abstract][Full Text] [Related]
17. Application of click chemistry to the production of DNA microarrays. Uszczyńska B; Ratajczak T; Frydrych E; Maciejewski H; Figlerowicz M; Markiewicz WT; Chmielewski MK Lab Chip; 2012 Mar; 12(6):1151-6. PubMed ID: 22318451 [TBL] [Abstract][Full Text] [Related]
18. Versatile site-specific conjugation of small molecules to siRNA using click chemistry. Yamada T; Peng CG; Matsuda S; Addepalli H; Jayaprakash KN; Alam MR; Mills K; Maier MA; Charisse K; Sekine M; Manoharan M; Rajeev KG J Org Chem; 2011 Mar; 76(5):1198-211. PubMed ID: 21299239 [TBL] [Abstract][Full Text] [Related]
19. Cycloaddition reactivity studies of first-row transition metal-azide complexes and alkynes: an inorganic click reaction for metalloenzyme inhibitor synthesis. Evangelio E; Rath NP; Mirica LM Dalton Trans; 2012 Jul; 41(26):8010-21. PubMed ID: 22517535 [TBL] [Abstract][Full Text] [Related]
20. DFT study of glucose based glycolipid crown ethers and their complexes with alkali metal cations Na(+) and K(+). Nguan H; Ahmadi S; Hashim R J Mol Model; 2012 Dec; 18(12):5041-50. PubMed ID: 22752540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]