These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25658341)

  • 1. Microemulsions, modulated phases and macroscopic phase separation: a unified picture of rafts.
    Giang H; Shlomovitz R; Schick M
    Essays Biochem; 2015; 57():21-32. PubMed ID: 25658341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid bilayers: clusters, domains and phases.
    Ackerman DG; Feigenson GW
    Essays Biochem; 2015; 57():33-42. PubMed ID: 25658342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroscopic and Nanoscopic Heterogeneous Structures in a Three-Component Lipid Bilayer Mixtures Determined by Atomic Force Microscopy.
    Khadka NK; Ho CS; Pan J
    Langmuir; 2015 Nov; 31(45):12417-25. PubMed ID: 26506226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroscopic phase separation, modulated phases, and microemulsions: a unified picture of rafts.
    Shlomovitz R; Maibaum L; Schick M
    Biophys J; 2014 May; 106(9):1979-85. PubMed ID: 24806930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase diagrams of lipid mixtures relevant to the study of membrane rafts.
    Goñi FM; Alonso A; Bagatolli LA; Brown RE; Marsh D; Prieto M; Thewalt JL
    Biochim Biophys Acta; 2008; 1781(11-12):665-84. PubMed ID: 18952002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I.
    Massey JB; Pownall HJ
    Biochemistry; 2005 Aug; 44(30):10423-33. PubMed ID: 16042420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy.
    Kahya N
    Chem Phys Lipids; 2006 Jun; 141(1-2):158-68. PubMed ID: 16696961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1.
    Staneva G; Seigneuret M; Conjeaud H; Puff N; Angelova MI
    Langmuir; 2011 Dec; 27(24):15074-82. PubMed ID: 22026409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts.
    de Almeida RF; Fedorov A; Prieto M
    Biophys J; 2003 Oct; 85(4):2406-16. PubMed ID: 14507704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule investigation of the influence played by lipid rafts on ion transport and dynamic features of the pore-forming alamethicin oligomer.
    Chiriac R; Luchian T
    J Membr Biol; 2008; 224(1-3):45-54. PubMed ID: 18850058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase studies of model biomembranes: macroscopic coexistence of Lalpha+Lbeta, with light-induced coexistence of Lalpha+Lo Phases.
    Zhao J; Wu J; Shao H; Kong F; Jain N; Hunt G; Feigenson G
    Biochim Biophys Acta; 2007 Nov; 1768(11):2777-86. PubMed ID: 17931595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinguishing individual lipid headgroup mobility and phase transitions in raft-forming lipid mixtures with 31P MAS NMR.
    Holland GP; McIntyre SK; Alam TM
    Biophys J; 2006 Jun; 90(11):4248-60. PubMed ID: 16533851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase separation is induced by phenothiazine derivatives in phospholipid/sphingomyelin/cholesterol mixtures containing low levels of cholesterol and sphingomyelin.
    Hendrich AB; Michalak K; Wesołowska O
    Biophys Chem; 2007 Oct; 130(1-2):32-40. PubMed ID: 17662517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and spatio-temporal evolution of periodic structures in lipid bilayers.
    Rozovsky S; Kaizuka Y; Groves JT
    J Am Chem Soc; 2005 Jan; 127(1):36-7. PubMed ID: 15631436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Raman-tagged sphingomyelin that closely mimics original raft-forming behavior.
    Cui J; Matsuoka S; Kinoshita M; Matsumori N; Sato F; Murata M; Ando J; Yamakoshi H; Dodo K; Sodeoka M
    Bioorg Med Chem; 2015 Jul; 23(13):2989-94. PubMed ID: 26026768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of sphingomyelin bilayers and complexes with cholesterol forming membrane rafts.
    Quinn PJ
    Langmuir; 2013 Jul; 29(30):9447-56. PubMed ID: 23863113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures.
    Bunge A; Müller P; Stöckl M; Herrmann A; Huster D
    Biophys J; 2008 Apr; 94(7):2680-90. PubMed ID: 18178660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tension-induced morphological transition in mixed lipid bilayers.
    Komura S; Shimokawa N; Andelman D
    Langmuir; 2006 Aug; 22(16):6771-4. PubMed ID: 16863221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular-level organization of saturated and polyunsaturated fatty acids in a phosphatidylcholine bilayer containing cholesterol.
    Pitman MC; Suits F; Mackerell AD; Feller SE
    Biochemistry; 2004 Dec; 43(49):15318-28. PubMed ID: 15581344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.