These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 25658582)

  • 1. Cell cycle control by a minimal Cdk network.
    Gérard C; Tyson JJ; Coudreuse D; Novák B
    PLoS Comput Biol; 2015 Feb; 11(2):e1004056. PubMed ID: 25658582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimal models for cell-cycle control based on competitive inhibition and multisite phosphorylations of Cdk substrates.
    Gérard C; Tyson JJ; Novák B
    Biophys J; 2013 Mar; 104(6):1367-79. PubMed ID: 23528096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fission yeast S-phase cyclin Cig2 can drive mitosis.
    Pickering M; Magner M; Keifenheim D; Rhind N
    Genetics; 2021 Mar; 217(1):1-12. PubMed ID: 33683349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CDK Substrate Phosphorylation and Ordering the Cell Cycle.
    Swaffer MP; Jones AW; Flynn HR; Snijders AP; Nurse P
    Cell; 2016 Dec; 167(7):1750-1761.e16. PubMed ID: 27984725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CDK control pathways integrate cell size and ploidy information to control cell division.
    Patterson JO; Basu S; Rees P; Nurse P
    Elife; 2021 Jun; 10():. PubMed ID: 34114564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting a skeleton model for the mammalian cell cycle: From bistability to Cdk oscillations and cellular heterogeneity.
    Gérard C; Gonze D; Goldbeter A
    J Theor Biol; 2019 Jan; 461():276-290. PubMed ID: 30352237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single cyclin-CDK complex is sufficient for both mitotic and meiotic progression in fission yeast.
    Gutiérrez-Escribano P; Nurse P
    Nat Commun; 2015 Apr; 6():6871. PubMed ID: 25891897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model scenarios for evolution of the eukaryotic cell cycle.
    Novak B; Csikasz-Nagy A; Gyorffy B; Nasmyth K; Tyson JJ
    Philos Trans R Soc Lond B Biol Sci; 1998 Dec; 353(1378):2063-76. PubMed ID: 10098216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology].
    Viallard JF; Lacombe F; Belloc F; Pellegrin JL; Reiffers J
    Cancer Radiother; 2001 Apr; 5(2):109-29. PubMed ID: 11355576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From simple to complex patterns of oscillatory behavior in a model for the mammalian cell cycle containing multiple oscillatory circuits.
    Gérard C; Goldbeter A
    Chaos; 2010 Dec; 20(4):045109. PubMed ID: 21198121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantitative model for ordered Cdk substrate dephosphorylation during mitotic exit.
    Bouchoux C; Uhlmann F
    Cell; 2011 Nov; 147(4):803-14. PubMed ID: 22078879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An APC/C-Cdh1 Biosensor Reveals the Dynamics of Cdh1 Inactivation at the G1/S Transition.
    Ondracka A; Robbins JA; Cross FR
    PLoS One; 2016; 11(7):e0159166. PubMed ID: 27410035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclin/Cdk complexes: their involvement in cell cycle progression and mitotic division.
    John PC; Mews M; Moore R
    Protoplasma; 2001; 216(3-4):119-42. PubMed ID: 11732181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of CDC25A on SER283 in late S/G2 by CDK/cyclin complexes accelerates mitotic entry.
    Mazzolini L; Broban A; Froment C; Burlet-Schiltz O; Besson A; Manenti S; Dozier C
    Cell Cycle; 2016 Oct; 15(20):2742-52. PubMed ID: 27580187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Driving the cell cycle with a minimal CDK control network.
    Coudreuse D; Nurse P
    Nature; 2010 Dec; 468(7327):1074-9. PubMed ID: 21179163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal control of the dephosphorylation of Cdk substrates by mitotic exit pathways in budding yeast.
    Jin F; Liu H; Liang F; Rizkallah R; Hurt MM; Wang Y
    Proc Natl Acad Sci U S A; 2008 Oct; 105(42):16177-82. PubMed ID: 18845678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates.
    Suryadinata R; Sadowski M; Sarcevic B
    Biosci Rep; 2010 Mar; 30(4):243-55. PubMed ID: 20337599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential susceptibility of yeast S and M phase CDK complexes to inhibitory tyrosine phosphorylation.
    Keaton MA; Bardes ES; Marquitz AR; Freel CD; Zyla TR; Rudolph J; Lew DJ
    Curr Biol; 2007 Jul; 17(14):1181-9. PubMed ID: 17614281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential modulation of G1-S-phase cyclin-dependent kinase 2/cyclin complexes occurs during the acquisition of a polyploid DNA content.
    Datta NS; Williams JL; Long MW
    Cell Growth Differ; 1998 Aug; 9(8):639-50. PubMed ID: 9716181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CDK activity provides temporal and quantitative cues for organizing genome duplication.
    Perrot A; Millington CL; Gómez-Escoda B; Schausi-Tiffoche D; Wu PJ
    PLoS Genet; 2018 Feb; 14(2):e1007214. PubMed ID: 29466359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.