These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 25658649)
1. Enhanced performance using an SU-8 dielectric interlayer in a bulk heterojunction organic solar cell. Pang C; Chellappan V; Yim JH; Tan MJ; Goh GT; Lee S; Zhang J; de Mello J ACS Appl Mater Interfaces; 2015 Mar; 7(9):5219-25. PubMed ID: 25658649 [TBL] [Abstract][Full Text] [Related]
2. Electrospun ZnO nanowire plantations in the electron transport layer for high-efficiency inverted organic solar cells. Elumalai NK; Jin TM; Chellappan V; Jose R; Palaniswamy SK; Jayaraman S; Raut HK; Ramakrishna S ACS Appl Mater Interfaces; 2013 Oct; 5(19):9396-404. PubMed ID: 24028573 [TBL] [Abstract][Full Text] [Related]
3. Efficient Polymer Solar Cells by Lithium Sulfonated Polystyrene as a Charge Transport Interfacial Layer. Wang K; Zhang Z; Liu C; Fu Q; Xu W; Huang C; Weiss RA; Gong X ACS Appl Mater Interfaces; 2017 Feb; 9(6):5348-5357. PubMed ID: 28116895 [TBL] [Abstract][Full Text] [Related]
4. Air-stable efficient inverted polymer solar cells using solution-processed nanocrystalline ZnO interfacial layer. Tan MJ; Zhong S; Li J; Chen Z; Chen W ACS Appl Mater Interfaces; 2013 Jun; 5(11):4696-701. PubMed ID: 23646864 [TBL] [Abstract][Full Text] [Related]
5. Carrier lifetime extension via the incorporation of robust hole/electron blocking layers in bulk heterojunction polymer solar cells. Yoon Y; Kim HJ; Cho CH; Kim S; Son HJ; Ko MJ; Kim H; Lee DK; Kim JY; Lee W; Kim BJ; Kim B ACS Appl Mater Interfaces; 2014 Jan; 6(1):333-9. PubMed ID: 24256096 [TBL] [Abstract][Full Text] [Related]
6. Strontium Fluoride and Zinc Oxide Stacked Structure as an Interlayer in High-Performance Inverted Polymer Solar Cells. Huang S; Pang Y; Li X; Wang Y; Yu A; Tang Y; Kang B; Silva SRP; Lu G ACS Appl Mater Interfaces; 2019 Jan; 11(2):2149-2158. PubMed ID: 30582327 [TBL] [Abstract][Full Text] [Related]
7. Impact of Electrodes on Recombination in Bulk Heterojunction Organic Solar Cells. Rahimi Chatri A; Torabi S; Le Corre VM; Koster LJA ACS Appl Mater Interfaces; 2018 Apr; 10(14):12013-12020. PubMed ID: 29546982 [TBL] [Abstract][Full Text] [Related]
8. Nanostructured Electron-Selective Interlayer for Efficient Inverted Organic Solar Cells. Song J; Lim J; Lee D; Thambidurai M; Kim JY; Park M; Song HJ; Lee S; Char K; Lee C ACS Appl Mater Interfaces; 2015 Aug; 7(33):18460-6. PubMed ID: 26238224 [TBL] [Abstract][Full Text] [Related]
9. High-efficiency inverted polymer solar cells with double interlayer. Subbiah J; Amb CM; Irfan I; Gao Y; Reynolds JR; So F ACS Appl Mater Interfaces; 2012 Feb; 4(2):866-70. PubMed ID: 22225481 [TBL] [Abstract][Full Text] [Related]
10. Interfacial Engineering Importance of Bilayered ZnO Cathode Buffer on the Photovoltaic Performance of Inverted Organic Solar Cells. Ambade RB; Ambade SB; Mane RS; Lee SH ACS Appl Mater Interfaces; 2015 Apr; 7(15):7951-60. PubMed ID: 25804557 [TBL] [Abstract][Full Text] [Related]
11. Solution-processed hybrid cathode interlayer for inverted organic solar cells. Wu Y; Zhang W; Li X; Min C; Jiu T; Zhu Y; Dai N; Fang J ACS Appl Mater Interfaces; 2013 Nov; 5(21):10428-32. PubMed ID: 24138511 [TBL] [Abstract][Full Text] [Related]
12. Enhanced performance in inverted polymer solar cells with D-π-A-type molecular dye incorporated on ZnO buffer layer. Song CE; Ryu KY; Hong SJ; Bathula C; Lee SK; Shin WS; Lee JC; Choi SK; Kim JH; Moon SJ ChemSusChem; 2013 Aug; 6(8):1445-54. PubMed ID: 23897708 [TBL] [Abstract][Full Text] [Related]
13. Enhanced Lifetime of Polymer Solar Cells by Surface Passivation of Metal Oxide Buffer Layers. Venkatesan S; Ngo E; Khatiwada D; Zhang C; Qiao Q ACS Appl Mater Interfaces; 2015 Jul; 7(29):16093-100. PubMed ID: 26148302 [TBL] [Abstract][Full Text] [Related]
14. Performance enhancement in inverted solar cells by interfacial modification of ZnO nanoparticle buffer layer. Ambade SB; Ambade RB; Kim S; Park H; Yoo DJ; Leel SH J Nanosci Nanotechnol; 2014 Nov; 14(11):8561-6. PubMed ID: 25958563 [TBL] [Abstract][Full Text] [Related]
15. Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells. Cho S; Kim KD; Heo J; Lee JY; Cha G; Seo BY; Kim YD; Kim YS; Choi SY; Lim DC Sci Rep; 2014 Mar; 4():4306. PubMed ID: 24603531 [TBL] [Abstract][Full Text] [Related]
16. Improvement of Charge Collection and Performance Reproducibility in Inverted Organic Solar Cells by Suppression of ZnO Subgap States. Wu B; Wu Z; Yang Q; Zhu F; Ng TW; Lee CS; Cheung SH; So SK ACS Appl Mater Interfaces; 2016 Jun; 8(23):14717-24. PubMed ID: 27224960 [TBL] [Abstract][Full Text] [Related]
17. Defect-induced loss mechanisms in polymer-inorganic planar heterojunction solar cells. Hartel M; Chen S; Swerdlow B; Hsu HY; Manders J; Schanze K; So F ACS Appl Mater Interfaces; 2013 Aug; 5(15):7215-8. PubMed ID: 23845167 [TBL] [Abstract][Full Text] [Related]
18. Roles of interfacial modifiers in hybrid solar cells: inorganic/polymer bilayer vs inorganic/polymer:fullerene bulk heterojunction. Eom SH; Baek MJ; Park H; Yan L; Liu S; You W; Lee SH ACS Appl Mater Interfaces; 2014 Jan; 6(2):803-10. PubMed ID: 24351036 [TBL] [Abstract][Full Text] [Related]
19. Correlating interface heterostructure, charge recombination, and device efficiency of poly(3-hexyl thiophene)/TiO2 nanorod solar cell. Zeng TW; Ho CC; Tu YC; Tu GY; Wang LY; Su WF Langmuir; 2011 Dec; 27(24):15255-60. PubMed ID: 22050188 [TBL] [Abstract][Full Text] [Related]
20. Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. Seo JH; Gutacker A; Sun Y; Wu H; Huang F; Cao Y; Scherf U; Heeger AJ; Bazan GC J Am Chem Soc; 2011 Jun; 133(22):8416-9. PubMed ID: 21557557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]