These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25658903)

  • 1. Daily life activity routine discovery in hemiparetic rehabilitation patients using topic models.
    Seiter J; Derungs A; Schuster-Amft C; Amft O; Tröster G
    Methods Inf Med; 2015; 54(3):248-55. PubMed ID: 25658903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors.
    Wang Z; Jiang M; Hu Y; Li H
    IEEE Trans Inf Technol Biomed; 2012 Jul; 16(4):691-9. PubMed ID: 22614724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data.
    Nef T; Urwyler P; Büchler M; Tarnanas I; Stucki R; Cazzoli D; Müri R; Mosimann U
    Sensors (Basel); 2015 May; 15(5):11725-40. PubMed ID: 26007727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined Vision and Wearable Sensors-based System for Movement Analysis in Rehabilitation.
    Spasojević S; Ilić TV; Milanović S; Potkonjak V; Rodić A; Santos-Victor J
    Methods Inf Med; 2017 Mar; 56(2):95-111. PubMed ID: 27922660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longitudinal Walking Analysis in Hemiparetic Patients Using Wearable Motion Sensors: Is There Convergence Between Body Sides?
    Derungs A; Schuster-Amft C; Amft O
    Front Bioeng Biotechnol; 2018; 6():57. PubMed ID: 29904628
    [No Abstract]   [Full Text] [Related]  

  • 7. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A remote quantitative Fugl-Meyer assessment framework for stroke patients based on wearable sensor networks.
    Yu L; Xiong D; Guo L; Wang J
    Comput Methods Programs Biomed; 2016 May; 128():100-10. PubMed ID: 27040835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Support vector machine for classification of walking conditions of persons after stroke with dropped foot.
    Lau HY; Tong KY; Zhu H
    Hum Mov Sci; 2009 Aug; 28(4):504-14. PubMed ID: 19428134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of activities of daily living in healthy subjects using two ad-hoc classifiers.
    Urwyler P; Rampa L; Stucki R; Büchler M; Müri R; Mosimann UP; Nef T
    Biomed Eng Online; 2015 Jun; 14():54. PubMed ID: 26048452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable inertial sensors for human movement analysis.
    Iosa M; Picerno P; Paolucci S; Morone G
    Expert Rev Med Devices; 2016 Jul; 13(7):641-59. PubMed ID: 27309490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical Activity Comparison Between Body Sides in Hemiparetic Patients Using Wearable Motion Sensors in Free-Living and Therapy: A Case Series.
    Derungs A; Schuster-Amft C; Amft O
    Front Bioeng Biotechnol; 2018; 6():136. PubMed ID: 30386777
    [No Abstract]   [Full Text] [Related]  

  • 13. Ambulatory activity intensity profiles, fitness, and fatigue in chronic stroke.
    Michael K; Macko RF
    Top Stroke Rehabil; 2007; 14(2):5-12. PubMed ID: 17517569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Functional Independence Measure Scores During Rehabilitation with Wearable Inertial Sensors.
    Sprint G; Cook DJ; Weeks DL; Borisov V
    IEEE Access; 2015; 3():1350-1366. PubMed ID: 27054054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition.
    Ordóñez FJ; Roggen D
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26797612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly.
    Najafi B; Aminian K; Paraschiv-Ionescu A; Loew F; Büla CJ; Robert P
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):711-23. PubMed ID: 12814238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of Daily Activities for the Elderly Using Wearable Sensors.
    Liu J; Sohn J; Kim S
    J Healthc Eng; 2017; 2017():8934816. PubMed ID: 29317996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance Evaluation of State of the Art Systems for Physical Activity Classification of Older Subjects Using Inertial Sensors in a Real Life Scenario: A Benchmark Study.
    Awais M; Palmerini L; Bourke AK; Ihlen EA; Helbostad JL; Chiari L
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27973434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Physical Activity Profiles in COPD Patients Using Topic Models.
    Spina G; Casale P; Albert PS; Alison J; Garcia-Aymerich J; Costello RW; Hernandes NA; van Gestel AJ; Leuppi JD; Mesquita R; Singh SJ; Smeenk FW; Tal-Singer R; Wouters EF; Spruit MA; den Brinker AC
    IEEE J Biomed Health Inform; 2015 Sep; 19(5):1567-76. PubMed ID: 25974957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Use of a Finger-Worn Accelerometer for Monitoring of Hand Use in Ambulatory Settings.
    Liu X; Rajan S; Ramasarma N; Bonato P; Lee SI
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):599-606. PubMed ID: 29994103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.