BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25658957)

  • 1. Identification and characterization of microRNAs from tree peony (Paeonia ostii) and their response to copper stress.
    Jin Q; Xue Z; Dong C; Wang Y; Chu L; Xu Y
    PLoS One; 2015; 10(2):e0117584. PubMed ID: 25658957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo transcriptome sequencing and discovery of genes related to copper tolerance in Paeonia ostii.
    Wang Y; Dong C; Xue Z; Jin Q; Xu Y
    Gene; 2016 Jan; 576(1 Pt 1):126-35. PubMed ID: 26435192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds.
    Yin DD; Li SS; Shu QY; Gu ZY; Wu Q; Feng CY; Xu WZ; Wang LS
    Gene; 2018 Aug; 666():72-82. PubMed ID: 29738839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress.
    Xie F; Stewart CN; Taki FA; He Q; Liu H; Zhang B
    Plant Biotechnol J; 2014 Apr; 12(3):354-66. PubMed ID: 24283289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of differentially expressed miRNAs and their target genes in response to brassinolide treatment on flowering of tree peony (
    Zhang L; Song C; Guo D; Guo L; Hou X; Wang H
    Plant Signal Behav; 2022 Dec; 17(1):2056364. PubMed ID: 35343364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome-Wide Identification of miRNAs and Their Targets from Typha angustifolia by RNA-Seq and Their Response to Cadmium Stress.
    Xu Y; Chu L; Jin Q; Wang Y; Chen X; Zhao H; Xue Z
    PLoS One; 2015; 10(4):e0125462. PubMed ID: 25923807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of salt-responsive microRNAs in Populus tomentosa by high-throughput sequencing.
    Ren Y; Chen L; Zhang Y; Kang X; Zhang Z; Wang Y
    Biochimie; 2013 Apr; 95(4):743-50. PubMed ID: 23142627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of conserved and novel microRNAs in Aquilaria sinensis based on small RNA sequencing and transcriptome sequence data.
    Gao ZH; Wei JH; Yang Y; Zhang Z; Xiong HY; Zhao WT
    Gene; 2012 Aug; 505(1):167-75. PubMed ID: 22521867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Paeonia ostii.
    Guo S; Guo L; Zhao W; Xu J; Li Y; Zhang X; Shen X; Wu M; Hou X
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29373520
    [No Abstract]   [Full Text] [Related]  

  • 10. Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing.
    Paul S; Kundu A; Pal A
    J Integr Plant Biol; 2014 Jan; 56(1):15-23. PubMed ID: 24138283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.).
    Yao Y; Guo G; Ni Z; Sunkar R; Du J; Zhu JK; Sun Q
    Genome Biol; 2007; 8(6):R96. PubMed ID: 17543110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of microRNAs in tree peony during chilling induced dormancy release by high-throughput sequencing.
    Zhang Y; Wang Y; Gao X; Liu C; Gai S
    Sci Rep; 2018 Mar; 8(1):4537. PubMed ID: 29540706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A potential role of microRNAs in plant response to metal toxicity.
    Yang ZM; Chen J
    Metallomics; 2013 Sep; 5(9):1184-90. PubMed ID: 23579282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of novel stress-regulated microRNAs from Oryza sativa L.
    Jian X; Zhang L; Li G; Zhang L; Wang X; Cao X; Fang X; Chen F
    Genomics; 2010 Jan; 95(1):47-55. PubMed ID: 19796675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of microRNAs in the developing maize endosperm.
    Gu Y; Liu Y; Zhang J; Liu H; Hu Y; Du H; Li Y; Chen J; Wei B; Huang Y
    Genomics; 2013; 102(5-6):472-8. PubMed ID: 24021532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel and conserved microRNAs in soybean floral whorls.
    Kulcheski FR; Molina LG; da Fonseca GC; de Morais GL; de Oliveira LF; Margis R
    Gene; 2016 Jan; 575(2 Pt 1):213-23. PubMed ID: 26341053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis.
    Hao DC; Yang L; Xiao PG; Liu M
    Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Throughput Sequencing of Small RNAs in the Two Cucurbita Germplasm with Different Sodium Accumulation Patterns Identifies Novel MicroRNAs Involved in Salt Stress Response.
    Xie J; Lei B; Niu M; Huang Y; Kong Q; Bie Z
    PLoS One; 2015; 10(5):e0127412. PubMed ID: 26010449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of miRNAs and their targets in wheat (Triticum aestivum L.) by EST analysis.
    Han J; Kong ML; Xie H; Sun QP; Nan ZJ; Zhang QZ; Pan JB
    Genet Mol Res; 2013 Sep; 12(3):3793-805. PubMed ID: 24085441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational identification and characterization of conserved miRNAs and their target genes in garlic (Allium sativum L.) expressed sequence tags.
    Panda D; Dehury B; Sahu J; Barooah M; Sen P; Modi MK
    Gene; 2014 Mar; 537(2):333-42. PubMed ID: 24434367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.