BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25658957)

  • 21. Computational identification of miRNAs and their targets in Phaseolus vulgaris.
    Han J; Xie H; Kong ML; Sun QP; Li RZ; Pan JB
    Genet Mol Res; 2014 Jan; 13(1):310-22. PubMed ID: 24535858
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and expression analysis of miRNAs from nitrogen-fixing soybean nodules.
    Wang Y; Li P; Cao X; Wang X; Zhang A; Li X
    Biochem Biophys Res Commun; 2009 Jan; 378(4):799-803. PubMed ID: 19084500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An array platform for identification of stress-responsive microRNAs in plants.
    Jia X; Mendu V; Tang G
    Methods Mol Biol; 2010; 639():253-69. PubMed ID: 20387051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential profiling analysis of miRNAs reveals a regulatory role in low N stress response of Populus.
    Ren Y; Sun F; Hou J; Chen L; Zhang Y; Kang X; Wang Y
    Funct Integr Genomics; 2015 Jan; 15(1):93-105. PubMed ID: 25398555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and characterization of new plant microRNAs using EST analysis.
    Zhang BH; Pan XP; Wang QL; Cobb GP; Anderson TA
    Cell Res; 2005 May; 15(5):336-60. PubMed ID: 15916721
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing.
    Chen L; Zhang Y; Ren Y; Xu J; Zhang Z; Wang Y
    Biochem Biophys Res Commun; 2012 Jan; 417(2):892-6. PubMed ID: 22209794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of genes encoding ω-6 desaturase PoFAD2 and PoFAD6, and ω-3 desaturase PoFAD3 for ALA accumulation in developing seeds of oil crop Paeonia ostii var. lishizhenii.
    Li L; Wang Z; Li Y; Wang D; Xiu Y; Wang H
    Plant Sci; 2021 Nov; 312():111029. PubMed ID: 34620433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational identification of novel microRNAs and targets in Brassica napus.
    Xie FL; Huang SQ; Guo K; Xiang AL; Zhu YY; Nie L; Yang ZM
    FEBS Lett; 2007 Apr; 581(7):1464-74. PubMed ID: 17367786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of conserved and novel microRNAs in Catharanthus roseus by deep sequencing and computational prediction of their potential targets.
    Prakash P; Ghosliya D; Gupta V
    Gene; 2015 Jan; 554(2):181-95. PubMed ID: 25445288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal.
    Zhou ZS; Zeng HQ; Liu ZP; Yang ZM
    Plant Cell Environ; 2012 Jan; 35(1):86-99. PubMed ID: 21895696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic expression of novel and conserved microRNAs and their targets in diploid and tetraploid of Paulownia tomentosa.
    Fan G; Zhai X; Niu S; Ren Y
    Biochimie; 2014 Jul; 102():68-77. PubMed ID: 24565810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and temporal expression analysis of conserved and novel microRNAs in Sorghum.
    Zhang L; Zheng Y; Jagadeeswaran G; Li Y; Gowdu K; Sunkar R
    Genomics; 2011 Dec; 98(6):460-8. PubMed ID: 21907786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oil biosynthesis and transcriptome profiles in developing endosperm and oil characteristic analyses in Paeonia ostii var. lishizhenii.
    Xiu Y; Wu G; Tang W; Peng Z; Bu X; Chao L; Yin X; Xiong J; Zhang H; Zhao X; Ding J; Ma L; Wang H; van Staden J
    J Plant Physiol; 2018 Sep; 228():121-133. PubMed ID: 29902680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-Wide Identification of Copper Stress-Regulated and Novel MicroRNAs in Mulberry Leaf.
    Du Q; Guo P; Shi Y; Zhang J; Zheng D; Li Y; Acheampong A; Wu P; Lin Q; Zhao W
    Biochem Genet; 2021 Apr; 59(2):589-603. PubMed ID: 33389282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of MiRNA from eggplant (Solanum melongena L.) by small RNA deep sequencing and their response to Verticillium dahliae infection.
    Yang L; Jue D; Li W; Zhang R; Chen M; Yang Q
    PLoS One; 2013; 8(8):e72840. PubMed ID: 24015279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reference genes selection of Paeonia ostii 'Fengdan' under osmotic stresses and hormone treatments by RT-qPCR.
    Guo L; Li Y; Wei Z; Wang C; Hou X
    Mol Biol Rep; 2023 Jan; 50(1):133-143. PubMed ID: 36315329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the stearoyl-ACP desaturase gene (PoSAD) from woody oil crop Paeonia ostii var. lishizhenii in oleic acid biosynthesis.
    Li L; Li Y; Wang R; Chao L; Xiu Y; Wang H
    Phytochemistry; 2020 Oct; 178():112480. PubMed ID: 32768716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptomic analysis of α-linolenic acid content and biosynthesis in Paeonia ostii fruits and seeds.
    Yu SY; Zhang X; Huang LB; Lyu YP; Zhang Y; Yao ZJ; Zhang XX; Yuan JH; Hu YH
    BMC Genomics; 2021 Apr; 22(1):297. PubMed ID: 33892636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characteristics of
    Li Y; Wang C; Guo Q; Song C; Wang X; Guo L; Hou X
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptome-wide identification and characterization of microRNAs responsive to phosphate starvation in Populus tomentosa.
    Bao H; Chen H; Chen M; Xu H; Huo X; Xu Q; Wang Y
    Funct Integr Genomics; 2019 Nov; 19(6):953-972. PubMed ID: 31177404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.