These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 25659011)
1. Scalable tight-binding model for graphene. Liu MH; Rickhaus P; Makk P; Tóvári E; Maurand R; Tkatschenko F; Weiss M; Schönenberger C; Richter K Phys Rev Lett; 2015 Jan; 114(3):036601. PubMed ID: 25659011 [TBL] [Abstract][Full Text] [Related]
2. Fabry-Pérot interference in gapped bilayer graphene with broken anti-Klein tunneling. Varlet A; Liu MH; Krueckl V; Bischoff D; Simonet P; Watanabe K; Taniguchi T; Richter K; Ensslin K; Ihn T Phys Rev Lett; 2014 Sep; 113(11):116601. PubMed ID: 25259993 [TBL] [Abstract][Full Text] [Related]
3. Dry transfer method for suspended graphene on lift-off-resist: simple ballistic devices with Fabry-Pérot interference. Liu Y; Abhilash TS; Laitinen A; Tan Z; Liu GJ; Hakonen P Nanotechnology; 2019 Jun; 30(25):25LT01. PubMed ID: 30840930 [TBL] [Abstract][Full Text] [Related]
4. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Zhang Y; Tan YW; Stormer HL; Kim P Nature; 2005 Nov; 438(7065):201-4. PubMed ID: 16281031 [TBL] [Abstract][Full Text] [Related]
5. Ballistic interferences in suspended graphene. Rickhaus P; Maurand R; Liu MH; Weiss M; Richter K; Schönenberger C Nat Commun; 2013; 4():2342. PubMed ID: 23946010 [TBL] [Abstract][Full Text] [Related]
6. Fabry-Pérot resonances and a crossover to the quantum Hall regime in ballistic graphene quantum point contacts. Ahmad NF; Komatsu K; Iwasaki T; Watanabe K; Taniguchi T; Mizuta H; Wakayama Y; Hashim AM; Morita Y; Moriyama S; Nakaharai S Sci Rep; 2019 Feb; 9(1):3031. PubMed ID: 30816251 [TBL] [Abstract][Full Text] [Related]
8. Quantum Hall effect in a gate-controlled p-n junction of graphene. Williams JR; Dicarlo L; Marcus CM Science; 2007 Aug; 317(5838):638-41. PubMed ID: 17600183 [TBL] [Abstract][Full Text] [Related]
10. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. Heine T Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917 [TBL] [Abstract][Full Text] [Related]
11. Diazonium functionalized graphene: microstructure, electric, and magnetic properties. Huang P; Jing L; Zhu H; Gao X Acc Chem Res; 2013 Jan; 46(1):43-52. PubMed ID: 23143937 [TBL] [Abstract][Full Text] [Related]
12. Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer. Yan W; He WY; Chu ZD; Liu M; Meng L; Dou RF; Zhang Y; Liu Z; Nie JC; He L Nat Commun; 2013; 4():2159. PubMed ID: 23851673 [TBL] [Abstract][Full Text] [Related]
13. Conductance oscillations induced by ballistic snake states in a graphene heterojunction. Taychatanapat T; Tan JY; Yeo Y; Watanabe K; Taniguchi T; Özyilmaz B Nat Commun; 2015 Feb; 6():6093. PubMed ID: 25652075 [TBL] [Abstract][Full Text] [Related]
16. Low-Magnetic-Field Regime of a Gate-Defined Constriction in High-Mobility Graphene. Veyrat L; Jordan A; Zimmermann K; Gay F; Watanabe K; Taniguchi T; Sellier H; Sacépé B Nano Lett; 2019 Feb; 19(2):635-642. PubMed ID: 30654611 [TBL] [Abstract][Full Text] [Related]
17. Suppression of electron-vibron coupling in graphene nanoribbons contacted via a single atom. van der Lit J; Boneschanscher MP; Vanmaekelbergh D; Ijäs M; Uppstu A; Ervasti M; Harju A; Liljeroth P; Swart I Nat Commun; 2013; 4():2023. PubMed ID: 23756598 [TBL] [Abstract][Full Text] [Related]
18. Gate-defined quantum confinement in suspended bilayer graphene. Allen MT; Martin J; Yacoby A Nat Commun; 2012 Jul; 3():934. PubMed ID: 22760633 [TBL] [Abstract][Full Text] [Related]
19. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes. Gabor NM Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453 [TBL] [Abstract][Full Text] [Related]