BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 25659414)

  • 1. Thermodynamic characterization of the DmsD binding site for the DmsA twin-arginine motif.
    Winstone TM; Turner RJ
    Biochemistry; 2015 Mar; 54(11):2040-51. PubMed ID: 25659414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hydrophobic region of the DmsA twin-arginine leader peptide determines specificity with chaperone DmsD.
    Winstone TM; Tran VA; Turner RJ
    Biochemistry; 2013 Oct; 52(43):7532-41. PubMed ID: 24093457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of GTP on system specific chaperone - Twin arginine signal peptide interaction.
    Cherak SJ; Turner RJ
    Biochem Biophys Res Commun; 2015 Oct; 465(4):753-7. PubMed ID: 26299930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of residues in DmsD for twin-arginine leader peptide binding, defined through random and bioinformatics-directed mutagenesis.
    Chan CS; Winstone TM; Chang L; Stevens CM; Workentine ML; Li H; Wei Y; Ondrechen MJ; Paetzel M; Turner RJ
    Biochemistry; 2008 Mar; 47(9):2749-59. PubMed ID: 18247574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification of a Tat leader peptide by co-expression with its chaperone.
    Stevens CM; Paetzel M
    Protein Expr Purif; 2012 Jul; 84(1):167-72. PubMed ID: 22609337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical nature of signal peptide binding to DmsD.
    Winstone TL; Workentine ML; Sarfo KJ; Binding AJ; Haslam BD; Turner RJ
    Arch Biochem Biophys; 2006 Nov; 455(1):89-97. PubMed ID: 16996473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DmsD, a Tat system specific chaperone, interacts with other general chaperones and proteins involved in the molybdenum cofactor biosynthesis.
    Li H; Chang L; Howell JM; Turner RJ
    Biochim Biophys Acta; 2010 Jun; 1804(6):1301-9. PubMed ID: 20153451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The twin-arginine leader-binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin-arginine translocase.
    Papish AL; Ladner CL; Turner RJ
    J Biol Chem; 2003 Aug; 278(35):32501-6. PubMed ID: 12813051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a twin-arginine leader-binding protein.
    Oresnik IJ; Ladner CL; Turner RJ
    Mol Microbiol; 2001 Apr; 40(2):323-31. PubMed ID: 11309116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding forms of Escherichia coli DmsD, a twin-arginine leader binding protein.
    Sarfo KJ; Winstone TL; Papish AL; Howell JM; Kadir H; Vogel HJ; Turner RJ
    Biochem Biophys Res Commun; 2004 Mar; 315(2):397-403. PubMed ID: 14766221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unusual pairing between assistants: interaction of the twin-arginine system-specific chaperone DmsD with the chaperonin GroEL.
    Chan CS; Song X; Qazi SJ; Setiaputra D; Yip CK; Chao TC; Turner RJ
    Biochem Biophys Res Commun; 2015 Jan; 456(4):841-6. PubMed ID: 25522883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DmsD is required for the biogenesis of DMSO reductase in Escherichia coli but not for the interaction of the DmsA signal peptide with the Tat apparatus.
    Ray N; Oates J; Turner RJ; Robinson C
    FEBS Lett; 2003 Jan; 534(1-3):156-60. PubMed ID: 12527378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The KdpC subunit of the Escherichia coli K+-transporting KdpB P-type ATPase acts as a catalytic chaperone.
    Irzik K; Pfrötzschner J; Goss T; Ahnert F; Haupt M; Greie JC
    FEBS J; 2011 Sep; 278(17):3041-53. PubMed ID: 21711450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of a monomeric form of the twin-arginine leader peptide binding chaperone Escherichia coli DmsD.
    Stevens CM; Winstone TM; Turner RJ; Paetzel M
    J Mol Biol; 2009 May; 389(1):124-33. PubMed ID: 19361518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of protein-protein interactions between the TatB and TatC subunits of the twin-arginine translocase system and respiratory enzyme specific chaperones.
    Kuzniatsova L; Winstone TM; Turner RJ
    Biochim Biophys Acta; 2016 Apr; 1858(4):767-75. PubMed ID: 26826271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualizing interactions along the Escherichia coli twin-arginine translocation pathway using protein fragment complementation.
    Kostecki JS; Li H; Turner RJ; DeLisa MP
    PLoS One; 2010 Feb; 5(2):e9225. PubMed ID: 20169075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot-spot analysis to dissect the functional protein-protein interface of a tRNA-modifying enzyme.
    Jakobi S; Nguyen TX; Debaene F; Metz A; Sanglier-Cianférani S; Reuter K; Klebe G
    Proteins; 2014 Oct; 82(10):2713-32. PubMed ID: 24975703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The conserved RGxxE motif of the bacterial FAD assembly factor SdhE is required for succinate dehydrogenase flavinylation and activity.
    McNeil MB; Fineran PC
    Biochemistry; 2013 Oct; 52(43):7628-40. PubMed ID: 24070374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique Photobleaching Phenomena of the Twin-Arginine Translocase Respiratory Enzyme Chaperone DmsD.
    Rivardo F; Leach TG; Chan CS; Winstone TM; Ladner CL; Sarfo KJ; Turner RJ
    Open Biochem J; 2014; 8():1-11. PubMed ID: 24497893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ¹H, ¹³C and ¹⁵N resonance assignments and peptide binding site chemical shift perturbation mapping for the Escherichia coli redox enzyme chaperone DmsD.
    Stevens CM; Okon M; McIntosh LP; Paetzel M
    Biomol NMR Assign; 2013 Oct; 7(2):193-7. PubMed ID: 22766963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.