These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
422 related articles for article (PubMed ID: 25659737)
1. Glutathione-capped CdTe nanocrystals as probe for the determination of fenbendazole. Li Q; Tan X; Li J; Pan L; Liu X Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 141():10-5. PubMed ID: 25659737 [TBL] [Abstract][Full Text] [Related]
2. Fluorescence quenching investigation on the interaction of glutathione-CdTe/CdS quantum dots with sanguinarine and its analytical application. Shen Y; Liu S; He Y Luminescence; 2014 Mar; 29(2):176-82. PubMed ID: 23640753 [TBL] [Abstract][Full Text] [Related]
3. Studying the interaction between CdTe quantum dots and Nile blue by absorption, fluorescence and resonance Rayleigh scattering spectra. Peng JJ; Liu SP; Wang L; He YQ Spectrochim Acta A Mol Biomol Spectrosc; 2010 May; 75(5):1571-6. PubMed ID: 20227334 [TBL] [Abstract][Full Text] [Related]
4. Detection of DNA using an "off-on" switch of a regenerating biosensor based on an electron transfer mechanism from glutathione-capped CdTe quantum dots to nile blue. Shen Y; Liu S; Kong L; Tan X; He Y; Yang J Analyst; 2014 Nov; 139(22):5858-67. PubMed ID: 25221793 [TBL] [Abstract][Full Text] [Related]
5. Photoluminescence Quenching of CdTe Quantum Dots Generated via Glutathione-Capped Au Nanocrystals. Zhu Y; Yang P; Miao Y; Cao Y; Yang Y J Nanosci Nanotechnol; 2015 Jun; 15(6):4276-84. PubMed ID: 26369039 [TBL] [Abstract][Full Text] [Related]
6. Sensitive detection of sodium cromoglycate with glutathione-capped CdTe quantum dots as a novel fluorescence probe. Hao C; Liu S; Li D; Yang J; He Y Luminescence; 2015 Nov; 30(7):1112-8. PubMed ID: 25683844 [TBL] [Abstract][Full Text] [Related]
7. Sensitive determination of enoxacin in pharmaceutical formulations by its quench effect on the fluorescence of glutathione-capped CdTe quantum dots. Yang Q; Tan X; Yang J Luminescence; 2016 Feb; 31(1):241-6. PubMed ID: 26105709 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence enhancement of glutathione capped CdTe/ZnS quantum dots by embedding into cationic starch for sensitive detection of rifampicin. Hooshyar Z; Bardajee GR Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():144-150. PubMed ID: 27639201 [TBL] [Abstract][Full Text] [Related]
9. Detection of glutathione with an "off-on" fluorescent biosensor based on N-acetyl-L-cysteine capped CdTe quantum dots. Tan X; Yang J; Li Q; Yang Q Analyst; 2015 Oct; 140(19):6748-57. PubMed ID: 26332659 [TBL] [Abstract][Full Text] [Related]
10. Hydrothermal synthesis of GSH-TGA co-capped CdTe quantum dots and their application in labeling colorectal cancer cells. Yu Y; Xu L; Chen J; Gao H; Wang S; Fang J; Xu S Colloids Surf B Biointerfaces; 2012 Jun; 95():247-53. PubMed ID: 22494668 [TBL] [Abstract][Full Text] [Related]
11. Effect of CdTe quantum dots size on the conformational changes of human serum albumin: results of spectroscopy and isothermal titration calorimetry. Yang B; Liu R; Hao X; Wu Y; Du J Biol Trace Elem Res; 2013 Oct; 155(1):150-8. PubMed ID: 23904329 [TBL] [Abstract][Full Text] [Related]
12. Detection of DNA utilizing a fluorescent reversible change of a biosensor based on the electron transfer from quantum dots to polymyxin B sulfate. Wang L; Liu S; Liang W; Li D; Yang J; He Y J Colloid Interface Sci; 2015 Jun; 448():257-64. PubMed ID: 25744859 [TBL] [Abstract][Full Text] [Related]
13. Cu²⁺ functionalized N-acetyl-L-cysteine capped CdTe quantum dots as a novel resonance Rayleigh scattering probe for the recognition of phenylalanine enantiomers. Yang J; Tan X; Zhang X; Yang Q; Shen Y Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():591-7. PubMed ID: 26163781 [TBL] [Abstract][Full Text] [Related]
14. Molecular spectroscopic studies on the interactions of rhein and emodin with thioglycolic acid-capped core/shell CdTe/CdS quantum dots and their analytical applications. Li D; Liu S; Shen Y; Yang J; He Y Luminescence; 2015 Feb; 30(1):60-6. PubMed ID: 24850622 [TBL] [Abstract][Full Text] [Related]
15. A selective determination of copper ions in water samples based on the fluorescence quenching of thiol-capped CdTe quantum dots. Nurerk P; Kanatharana P; Bunkoed O Luminescence; 2016 Mar; 31(2):515-522. PubMed ID: 26250550 [TBL] [Abstract][Full Text] [Related]
16. Switch-on fluorescent strategy based on crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione in water and urine. Sheng Z; Chen L Anal Bioanal Chem; 2017 Oct; 409(26):6081-6090. PubMed ID: 28799001 [TBL] [Abstract][Full Text] [Related]
17. A simple and sensitive label-free fluorescence sensing of heparin based on Cdte quantum dots. Rezaei B; Shahshahanipour M; Ensafi AA Luminescence; 2016 Jun; 31(4):958-64. PubMed ID: 26542329 [TBL] [Abstract][Full Text] [Related]
18. Determination of 2-methoxyestradiol by chemiluminescence based on luminol-KMnO4-CdTe quantum dots system. Du B; Wang T; Han S; Cao X; Qu T; Zhao F; Guo X; Yao H Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():149-54. PubMed ID: 25439823 [TBL] [Abstract][Full Text] [Related]
19. D-penicillamine capped cadmium telluride quantum dots as a novel fluorometric sensor of copper(II). Mohammad-Rezaei R; Razmi H; Abdolmohammad-Zadeh H Luminescence; 2013; 28(4):503-9. PubMed ID: 23447377 [TBL] [Abstract][Full Text] [Related]
20. Quantum dots (QDs) based fluorescence probe for the sensitive determination of kaempferol. Tan X; Liu S; Shen Y; He Y; Yang J Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():66-72. PubMed ID: 24929317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]