BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 25659819)

  • 1. Rapamycin-induced G1 cell cycle arrest employs both TGF-β and Rb pathways.
    Chatterjee A; Mukhopadhyay S; Tung K; Patel D; Foster DA
    Cancer Lett; 2015 May; 360(2):134-40. PubMed ID: 25659819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of S6 kinase suppresses the apoptotic effect of eIF4E ablation by inducing TGF-β-dependent G1 cell cycle arrest.
    Yellen P; Chatterjee A; Preda A; Foster DA
    Cancer Lett; 2013 Jun; 333(2):239-43. PubMed ID: 23376634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apoptotic effects of high-dose rapamycin occur in S-phase of the cell cycle.
    Saqcena M; Patel D; Menon D; Mukhopadhyay S; Foster DA
    Cell Cycle; 2015; 14(14):2285-92. PubMed ID: 25945415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of cyclin D1 expression by mTORC1 signaling requires eukaryotic initiation factor 4E-binding protein 1.
    Averous J; Fonseca BD; Proud CG
    Oncogene; 2008 Feb; 27(8):1106-13. PubMed ID: 17724476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-dose rapamycin induces apoptosis in human cancer cells by dissociating mTOR complex 1 and suppressing phosphorylation of 4E-BP1.
    Yellen P; Saqcena M; Salloum D; Feng J; Preda A; Xu L; Rodrik-Outmezguine V; Foster DA
    Cell Cycle; 2011 Nov; 10(22):3948-56. PubMed ID: 22071574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy.
    Hidalgo M; Rowinsky EK
    Oncogene; 2000 Dec; 19(56):6680-6. PubMed ID: 11426655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular target of rapamycin (mTOR) as a therapeutic target against cancer.
    Mita MM; Mita A; Rowinsky EK
    Cancer Biol Ther; 2003; 2(4 Suppl 1):S169-77. PubMed ID: 14508096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of insulin signaling and adipogenesis by rapamycin: effect on phosphorylation of p70 S6 kinase vs eIF4E-BP1.
    El-Chaâr D; Gagnon A; Sorisky A
    Int J Obes Relat Metab Disord; 2004 Feb; 28(2):191-8. PubMed ID: 14970836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defective TGF-beta signaling sensitizes human cancer cells to rapamycin.
    Gadir N; Jackson DN; Lee E; Foster DA
    Oncogene; 2008 Feb; 27(8):1055-62. PubMed ID: 17700525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapamycin inhibits cdk4 activation, p 21(WAF1/CIP1) expression and G1-phase progression in transformed mouse fibroblasts.
    Gaben AM; Saucier C; Bedin M; Barbu V; Mester J
    Int J Cancer; 2004 Jan; 108(2):200-6. PubMed ID: 14639603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metformin induces G1 cell cycle arrest and inhibits cell proliferation in nasopharyngeal carcinoma cells.
    Zhao L; Wen ZH; Jia CH; Li M; Luo SQ; Bai XC
    Anat Rec (Hoboken); 2011 Aug; 294(8):1337-43. PubMed ID: 21717584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term treatment of bile duct-ligated rats with rapamycin (sirolimus) significantly attenuates liver fibrosis: analysis of the underlying mechanisms.
    Biecker E; De Gottardi A; Neef M; Unternährer M; Schneider V; Ledermann M; Sägesser H; Shaw S; Reichen J
    J Pharmacol Exp Ther; 2005 Jun; 313(3):952-61. PubMed ID: 15769867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E.
    Fingar DC; Richardson CJ; Tee AR; Cheatham L; Tsou C; Blenis J
    Mol Cell Biol; 2004 Jan; 24(1):200-16. PubMed ID: 14673156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon monoxide releasing molecule-2 CORM-2 represses global protein synthesis by inhibition of eukaryotic elongation factor eEF2.
    Schwer CI; Stoll P; Rospert S; Fitzke E; Schallner N; Bürkle H; Schmidt R; Humar M
    Int J Biochem Cell Biol; 2013 Feb; 45(2):201-12. PubMed ID: 23041477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammalian target of rapamycin: a new molecular target for breast cancer.
    Mita MM; Mita A; Rowinsky EK
    Clin Breast Cancer; 2003 Jun; 4(2):126-37. PubMed ID: 12864941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rapid activation of protein synthesis by growth hormone requires signaling through mTOR.
    Hayashi AA; Proud CG
    Am J Physiol Endocrinol Metab; 2007 Jun; 292(6):E1647-55. PubMed ID: 17284572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways.
    Liu L; Li F; Cardelli JA; Martin KA; Blenis J; Huang S
    Oncogene; 2006 Nov; 25(53):7029-40. PubMed ID: 16715128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition.
    Dudkin L; Dilling MB; Cheshire PJ; Harwood FC; Hollingshead M; Arbuck SG; Travis R; Sausville EA; Houghton PJ
    Clin Cancer Res; 2001 Jun; 7(6):1758-64. PubMed ID: 11410517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Everolimus induces G
    Chen G; Ding XF; Bouamar H; Pressley K; Sun LZ
    Am J Physiol Cell Physiol; 2019 Aug; 317(2):C244-C252. PubMed ID: 31116586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of glycogen synthase kinase 3beta in rapamycin-mediated cell cycle regulation and chemosensitivity.
    Dong J; Peng J; Zhang H; Mondesire WH; Jian W; Mills GB; Hung MC; Meric-Bernstam F
    Cancer Res; 2005 Mar; 65(5):1961-72. PubMed ID: 15753396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.