These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 25659829)

  • 1. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals.
    Piasecka A; Jedrzejczak-Rey N; Bednarek P
    New Phytol; 2015 May; 206(3):948-964. PubMed ID: 25659829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Plant immune system: the basal immunity].
    Shamraĭ SN
    Tsitol Genet; 2014; 48(4):67-82. PubMed ID: 25184203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfur-containing secondary metabolites from Arabidopsis thaliana and other Brassicaceae with function in plant immunity.
    Bednarek P
    Chembiochem; 2012 Sep; 13(13):1846-59. PubMed ID: 22807086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical warfare or modulators of defence responses - the function of secondary metabolites in plant immunity.
    Bednarek P
    Curr Opin Plant Biol; 2012 Aug; 15(4):407-14. PubMed ID: 22445190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between tumors in plants and human beings: Mechanisms of tumor development and therapy with secondary plant metabolites.
    Ullrich CI; Aloni R; Saeed MEM; Ullrich W; Efferth T
    Phytomedicine; 2019 Nov; 64():153081. PubMed ID: 31568956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autophagy as an emerging arena for plant-pathogen interactions.
    Hofius D; Li L; Hafrén A; Coll NS
    Curr Opin Plant Biol; 2017 Aug; 38():117-123. PubMed ID: 28545004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant-microbe interactions: chemical diversity in plant defense.
    Bednarek P; Osbourn A
    Science; 2009 May; 324(5928):746-8. PubMed ID: 19423814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutathione Transferase U13 Functions in Pathogen-Triggered Glucosinolate Metabolism.
    Piślewska-Bednarek M; Nakano RT; Hiruma K; Pastorczyk M; Sanchez-Vallet A; Singkaravanit-Ogawa S; Ciesiołka D; Takano Y; Molina A; Schulze-Lefert P; Bednarek P
    Plant Physiol; 2018 Jan; 176(1):538-551. PubMed ID: 29122987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant chemical defenses: are all constitutive antimicrobial metabolites phytoanticipins?
    Pedras MS; Yaya EE
    Nat Prod Commun; 2015 Jan; 10(1):209-18. PubMed ID: 25920246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NLR diversity, helpers and integrated domains: making sense of the NLR IDentity.
    Baggs E; Dagdas G; Krasileva KV
    Curr Opin Plant Biol; 2017 Aug; 38():59-67. PubMed ID: 28494248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conservation and clade-specific diversification of pathogen-inducible tryptophan and indole glucosinolate metabolism in Arabidopsis thaliana relatives.
    Bednarek P; Piślewska-Bednarek M; Ver Loren van Themaat E; Maddula RK; Svatoš A; Schulze-Lefert P
    New Phytol; 2011 Nov; 192(3):713-26. PubMed ID: 21793828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonself perception in plant innate immunity.
    Dubery IA; Sanabria NM; Huang JC
    Adv Exp Med Biol; 2012; 738():79-107. PubMed ID: 22399375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonhost resistance against bacterial pathogens: retrospectives and prospects.
    Senthil-Kumar M; Mysore KS
    Annu Rev Phytopathol; 2013; 51():407-27. PubMed ID: 23725473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants.
    Anderson RG; Casady MS; Fee RA; Vaughan MM; Deb D; Fedkenheuer K; Huffaker A; Schmelz EA; Tyler BM; McDowell JM
    Plant J; 2012 Dec; 72(6):882-93. PubMed ID: 22709376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and cellular mechanisms regulating plant responses to necrotrophic pathogens.
    Lai Z; Mengiste T
    Curr Opin Plant Biol; 2013 Aug; 16(4):505-12. PubMed ID: 23859758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auxin crosstalk to plant immune networks: a plant-pathogen interaction perspective.
    Naseem M; Srivastava M; Tehseen M; Ahmed N
    Curr Protein Pept Sci; 2015; 16(5):389-94. PubMed ID: 25824384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-translational regulation of plant immunity.
    Withers J; Dong X
    Curr Opin Plant Biol; 2017 Aug; 38():124-132. PubMed ID: 28538164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards engineering of hormonal crosstalk in plant immunity.
    Shigenaga AM; Berens ML; Tsuda K; Argueso CT
    Curr Opin Plant Biol; 2017 Aug; 38():164-172. PubMed ID: 28624670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional Factors Regulate Plant Stress Responses through Mediating Secondary Metabolism.
    Meraj TA; Fu J; Raza MA; Zhu C; Shen Q; Xu D; Wang Q
    Genes (Basel); 2020 Mar; 11(4):. PubMed ID: 32218164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arabidopsis Endoplasmic Reticulum-Localized UBAC2 Proteins Interact with PAMP-INDUCED COILED-COIL to Regulate Pathogen-Induced Callose Deposition and Plant Immunity.
    Wang Z; Li X; Wang X; Liu N; Xu B; Peng Q; Guo Z; Fan B; Zhu C; Chen Z
    Plant Cell; 2019 Jan; 31(1):153-171. PubMed ID: 30606781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.